. Who, Global leishmaniasis surveillance, and first report on 5 additional indicators Ruiz-Postigo JA, vol.95, pp.265-280, 2017.

J. Alvar, I. D. Velez, C. Bern, M. Herrero, and P. Desjeux, Leishmaniasis worldwide and global estimates of its incidence, PLoS One, vol.7, 2012.

M. Podinovskaia and A. Descoteaux, Leishmania and the macrophage: a multifaceted interaction, Future Microbiol, vol.10, pp.111-129, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01123316

J. Young and P. E. Kima, The Leishmania parasitophorous vacuole membrane at the parasite-host interface, Yale J Biol Med, vol.92, pp.511-521, 2019.

M. F. Horta, L. O. Andrade, E. S. Martins-duarte, and T. Castro-gomes, Cell invasion by intracellular parasites-the many roads to infection, J Cell Sci, p.133, 2020.

R. Levin, S. Grinstein, and J. Canton, The life cycle of phagosomes: formation, maturation, and resolution, Immunol Rev, vol.273, pp.156-179, 2016.

M. Desjardins and A. Descoteaux, Inhibition of phagolysosomal biogenesis by the Leishmania lipophosphoglycan, J Exp Med, vol.185, pp.2061-2068, 1997.

J. F. Dermine, G. Goyette, M. Houde, S. J. Turco, and M. Desjardins, Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages, Cell Microbiol, vol.7, pp.1263-1270, 2005.

G. F. Spath, P. Schlesinger, R. Schreiber, and S. M. Beverley, A novel role for Stat1 in phagosome acidification and natural host resistance to intracellular infection by Leishmania major, PLoS Pathog, vol.5, p.1000381, 2009.

A. F. Vinet, M. Fukuda, S. J. Turco, and A. Descoteaux, The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V, PLoS Pathog, vol.5, 2009.

R. Lodge, T. O. Diallo, and A. Descoteaux, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cell Microbiol, vol.8, p.16848789, 2006.

D. Matheoud, N. Moradin, A. Bellemare-pelletier, M. T. Shio, and W. J. Hong, Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8, Cell Host Microbe, vol.14, pp.15-25, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01131970

B. Alten, C. Maia, M. O. Afonso, L. Campino, and M. Jimenez, Seasonal dynamics of phlebotomine sand fly species proven vectors of Mediterranean leishmaniasis caused by Leishmania infantum, PLoS Negl Trop Dis, vol.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01947775

P. D. Ready, Epidemiology of visceral leishmaniasis, Clin Epidemiol, vol.6, pp.147-154, 2014.

N. E. Rodriguez, G. Dixit, U. Allen, L. A. Wilson, and M. E. , Stage-specific pathways of Leishmania infantum chagasi entry and phagosome maturation in macrophages, PLoS One, vol.6, p.19000, 2011.

N. E. Rodriguez, U. Gaur, and M. E. Wilson, Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages, Cell Microbiol, vol.8, pp.1106-1120, 2006.

N. Ueno, C. L. Bratt, N. E. Rodriguez, and M. E. Wilson, Differences in human macrophage receptor usage, lysosomal fusion kinetics and survival between logarithmic and metacyclic Leishmania infantum chagasi promastigotes, Cell Microbiol, vol.11, pp.1827-1841, 2009.

C. H. Hsiao, N. Ueno, J. Q. Shao, K. R. Schroeder, and K. C. Moore, The effects of macrophage source on the mechanism of phagocytosis and intracellular survival of Leishmania, Microbes Infect, vol.13, pp.1033-1044, 2011.

E. L. Eskelinen, Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy, Mol Aspects Med, vol.27, p.16973206, 2006.

D. Poteryaev, S. Datta, K. Ackema, M. Zerial, and A. Spang, Identification of the switch in early-to-late endosome transition, Cell, vol.141, pp.497-508, 2010.

N. A. Bright, L. J. Davis, and J. P. Luzio, Endolysosomes are the principal intracellular sites of acid hydrolase activity, Curr Biol, vol.26, pp.2233-2245, 2016.

V. Kreykenbohm, D. Wenzel, A. W. Atlachkine, V. Von-mollard, and G. F. , The SNAREs vti1a and vti1b have distinct localization and SNARE complex partners, Eur J Cell Biol, vol.81, pp.273-280, 2002.

S. Schmidt, H. G. Joost, and A. Schurmann, GLUT8, the enigmatic intracellular hexose transporter, Am J Physiol Endocrinol Metab, vol.296, pp.614-618, 2008.

B. A. Schroder, C. Wrocklage, A. Hasilik, and P. Saftig, The proteome of lysosomes, Proteomics, vol.10, pp.4053-4076, 2010.

I. Bangert, F. Tumulka, and R. Abele, The lysosomal polypeptide transporter TAPL: more than a housekeeping factor?, Biol Chem, vol.392, pp.61-66, 2011.

J. F. Dermine, S. Duclos, J. Garin, F. St-louis, and S. Rea, Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes, J Biol Chem, vol.276, pp.18507-18512, 2001.

N. Courret, C. Frehel, N. Gouhier, M. Pouchelet, and E. Prina, Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites, J Cell Sci, vol.115, pp.2303-2316, 2002.

E. Prina, J. C. Antoine, B. Wiederanders, and H. Kirschke, Localization and activity of various lysosomal proteases in Leishmania amazonensis-infected macrophages, Infect Immun, vol.58, pp.1730-1737, 1990.

B. Stechmann, S. K. Bai, E. Gobbo, R. Lopez, and G. Merer, Inhibition of retrograde transport protects mice from lethal ricin challenge, Cell, vol.141, pp.231-242, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509058

A. Forrester, S. J. Rathjen, D. Garcia-castillo, M. Bachert, C. Couhert et al., Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2, Nat Chem Biol, vol.16, pp.327-336, 2020.

F. Real and R. A. Mortara, The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging, PLoS Negl Trop Dis, vol.6, 2012.

S. Scianimanico, M. Desrosiers, J. F. Dermine, S. Meresse, and A. Descoteaux, Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes, Cell Microbiol, vol.1, pp.19-32, 1999.

J. Canton and P. E. Kima, Targeting host syntaxin-5 preferentially blocks Leishmania parasitophorous vacuole development in infected cells and limits experimental Leishmania infections, Am J Pathol, vol.181, pp.1348-1355, 2012.

D. Gatica, V. Lahiri, and D. J. Klionsky, Cargo recognition and degradation by selective autophagy, Nature Cell Biology, vol.20, p.29476151, 2018.

S. Nakamura and T. Yoshimori, New insights into autophagosome-lysosome fusion, J Cell Sci, vol.130, pp.1209-1216, 2017.

D. J. Klionsky, K. Abdelmohsen, A. Abe, M. J. Abedin, and H. Abeliovich, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02486052

M. O. Steinmetz and A. E. Prota, Microtubule-targeting agents: Strategies to hijack the cytoskeleton, Trends Cell Biol, vol.28, pp.776-792, 2018.

J. J. Liu, Regulation of dynein-dynactin-driven vesicular transport, Traffic, vol.18, pp.336-347, 2017.

A. Rai, D. Pathak, S. Thakur, S. Singh, and A. K. Dubey, Dynein clusters into lipid microdomains on phagosomes to drive rapid transport toward lysosomes, Cell, vol.164, pp.722-734, 2016.

J. P. Luzio, P. R. Pryor, and N. A. Bright, Lysosomes: fusion and function, Nat Rev Mol Cell Biol, vol.8, pp.622-632, 2007.

M. Desjardins, Biogenesis of phagolysosomes: the 'kiss and run' hypothesis, Trends Cell Biol, vol.5, pp.88989-88997, 1995.

A. Marques and P. Saftig, Lysosomal storage disorders-challenges, concepts and avenues for therapy: beyond rare diseases, J Cell Sci, vol.132, 2019.

A. Blocker, G. Griffiths, J. C. Olivo, A. A. Hyman, and F. F. Severin, A role for microtubule dynamics in phagosome movement, J Cell Sci, vol.111, pp.303-312, 1998.

R. E. Harrison, C. Bucci, O. V. Vieira, T. A. Schroer, and S. Grinstein, Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP, Mol Cell Biol, vol.23, pp.6494-6506, 2003.

S. Keller, K. Berghoff, and H. Kress, Phagosomal transport depends strongly on phagosome size, Sci Rep, vol.7, p.29213131, 2017.

T. Lang, R. Hellio, P. M. Kaye, and J. C. Antoine, Leishmania donovani-infected macrophages: characterization of the parasitophorous vacuole and potential role of this organelle in antigen presentation, J Cell Sci, vol.107, pp.2137-2150, 1994.

J. F. Dermine, S. Scianimanico, C. Prive, A. Descoteaux, and M. Desjardins, Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis, Cell Microbiol, vol.2, p.11207568, 2000.

B. Mittra and N. W. Andrews, IRONy OF FATE: role of iron-mediated ROS in Leishmania differentiation, Trends Parasitol, vol.29, pp.489-496, 2013.

G. F. Spath, S. Drini, and N. Rachidi, A touch of Zen: post-translational regulation of the Leishmania stress response, Cell Microbiol, vol.17, pp.632-638, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01433407

P. E. Kima, The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist, Int J Parasitol, vol.37, pp.1087-1096, 2007.

M. J. Mcconville, D. De-souza, E. Saunders, V. A. Likic, and T. Naderer, Living in a phagolysosome; metabolism of Leishmania amastigotes, Trends Parasitol, vol.23, pp.368-375, 2007.

J. Canton and P. E. Kima, Interactions of pathogen-containing compartments with the secretory pathway, Cell Microbiol, vol.14, pp.1676-1686, 2012.

M. J. Mcconville and T. Naderer, Metabolic pathways required for the intracellular survival of Leishmania, Annu Rev Microbiol, vol.65, pp.543-561, 2011.

M. J. Mcconville, Metabolic crosstalk between Leishmania and the macrophage host, Trends Parasitol, vol.32, pp.666-668, 2016.

M. J. Mcconville, E. C. Saunders, J. Kloehn, and M. J. Dagley, Leishmania carbon metabolism in the macrophage phagolysosome-feast or famine?, F1000 Res, vol.4, p.938, 2015.

N. Gupta, R. Noel, A. Goudet, K. Hinsinger, and A. Michau, Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales, Chem Biol Interact, vol.267, pp.96-103, 2017.

M. E. Nonnenmacher, J. C. Cintrat, D. Gillet, and T. Weber, Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction, J Virol, vol.89, pp.1673-1687, 2015.

A. Lipovsky, A. Popa, G. Pimienta, M. Wyler, and A. Bhan, Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus, Proc Natl Acad Sci U S A, vol.110, pp.7452-7457, 2013.

D. W. Morgens, C. Chan, A. J. Kane, N. R. Weir, and A. Li, Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins, 2019.

W. Dai, Y. Wu, J. Bi, X. Lu, and A. Hou, Antiviral effects of Retro-2(cycl) and Retro-2.1 against Enterovirus 71 in vitro and in vivo, Antiviral Res, vol.144, pp.311-321, 2017.

O. Shtanko, Y. Sakurai, A. N. Reyes, R. Noel, and J. C. Cintrat, Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection, Antiviral Res, vol.149, pp.154-163, 2018.

S. L. Reck-peterson, W. B. Redwine, R. D. Vale, and A. P. Carter, The cytoplasmic dynein transport machinery and its many cargoes, Nat Rev Mol Cell Biol, vol.19, p.29662141, 2018.

C. Delevoye and B. Goud, Rab GTPases and kinesin motors in endosomal trafficking, Methods Cell Biol, vol.130, pp.235-246, 2015.

H. Farhan, Rendezvous of Retro-2 at the ER, Nat Chem Biol, vol.16, pp.229-230, 2020.

W. O. Hancock, Bidirectional cargo transport: moving beyond tug of war, Nat Rev Mol Cell Biol, vol.15, pp.615-628, 2014.

C. Janke and J. C. Bulinski, Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions, Nat Rev Mol Cell Biol, vol.12, pp.773-786, 2011.

J. Canton, B. Ndjamen, K. Hatsuzawa, and P. E. Kima, Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection, Cell Microbiol, vol.14, p.22309219, 2012.

E. Craig, C. E. Huyghues-despointes, C. Yu, E. L. Handy, and J. K. Sello, Structurally optimized analogs of the retrograde trafficking inhibitor Retro-2cycl limit Leishmania infections, PLoS Negl Trop Dis, vol.11, 2017.

A. Descoteaux, The macrophage-parasite interface as a chemotherapeutic target in leishmaniasis, Drug discovery for leishmaniasis, pp.387-395, 2018.

S. Lamotte, G. F. Spath, N. Rachidi, and E. Prina, The enemy within: Targeting host-parasite interaction for antileishmanial drug discovery, PLoS Negl Trop Dis, vol.11, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570238

K. Jain and N. K. Jain, Novel therapeutic strategies for treatment of visceral leishmaniasis, Drug Discov Today, vol.18, pp.1272-1281, 2013.

T. Lang, C. De-chastellier, C. Frehel, R. Hellio, and P. Metezeau, Distribution of MHC class I and of MHC class II molecules in macrophages infected with Leishmania amazonensis, J Cell Sci, vol.107, pp.69-82, 1994.

R. Augustin, J. Riley, and K. H. Moley, GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment, Traffic, vol.6, p.16262729, 2005.

J. C. Wolters, R. Abele, and R. Tampe, Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9), J Biol Chem, vol.280, pp.23631-23636, 2005.

D. Bosc, E. Mouray, S. Cojean, C. H. Franco, and P. M. Loiseau, Highly improved antiparasitic activity after introduction of an N-benzylimidazole moiety on protein farnesyltransferase inhibitors, Eur J Med Chem, vol.109, pp.173-186, 2016.
URL : https://hal.archives-ouvertes.fr/mnhn-02047327

E. T. Bampton, C. G. Goemans, D. Niranjan, N. Mizushima, and A. M. Tolkovsky, The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes, Autophagy, vol.1, pp.23-36, 2005.