C. Wang, P. W. Horby, F. G. Hayden, and G. F. Gao, A novel coronavirus outbreak of global health concern, Lancet, vol.395, p.31986257, 2020.

P. Central and P. ,

N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al., A Novel Coronavirus from Patients with Pneumonia in China, N Engl J Med, vol.382, issue.8, p.7092803, 2019.

F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang et al., A new coronavirus associated with human respiratory disease in China, Nature, vol.579, issue.7798, p.7094943, 2020.

J. F. Chan, K. H. Kok, Z. Zhu, H. Chu, K. K. To et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg Microbes Infect, vol.9, issue.1, p.7067204, 2020.

D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing, Nature, vol.583, p.32353859, 2020.

F. Streicher and N. Jouvenet, Stimulation of Innate Immunity by Host and Viral RNAs, Trends Immunol, vol.40, issue.12, pp.1134-1182, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02383514

J. W. Schoggins, Interferon-Stimulated Genes: What Do They All Do?, Annu Rev Virol, vol.6, issue.1, pp.567-84, 2019.

S. Liu, M. Jiang, W. Wang, W. Liu, X. Song et al., Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA, Nat Immunol, vol.19, issue.1, pp.41-52, 2018.

K. M. Rose and S. R. Weiss, Murine Coronavirus Cell Type Dependent Interaction with the Type I Interferon Response, Viruses, vol.1, issue.3, pp.689-712, 2009.

K. Arimoto, H. Takahashi, T. Hishiki, H. Konishi, T. Fujita et al., Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125, Proc Natl Acad Sci, vol.104, issue.18, p.1863485, 2007.

S. Gal-ben-ari, I. Barrera, M. Ehrlich, and K. Rosenblum, PKR: A Kinase to Remember, Front Mol Neurosci, vol.11, p.6333748, 2019.

A. Dalet, R. J. Arguello, A. Combes, L. Spinelli, S. Jaeger et al., Protein synthesis inhibition and GADD34 control IFN-beta heterogeneous expression in response to dsRNA, EMBO J, vol.36, issue.6, p.5350567, 2017.

A. Dalet, E. Gatti, and P. Pierre, Integration of PKR-dependent translation inhibition with innate immunity is required for a coordinated anti-viral response, FEBS Lett, vol.589, issue.14, p.6, 2015.

H. H. Rabouw, M. A. Langereis, R. C. Knaap, T. J. Dalebout, J. Canton et al., Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses, PLoS Pathog, vol.12, issue.10, p.5081173, 2016.

K. Nakagawa, K. Narayanan, M. Wada, and S. Makino, Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication, J Virol, vol.92, issue.20, p.6158436, 2018.

F. Wimmers, N. Subedi, N. Van-buuringen, D. Heister, J. Vivie et al., Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells, Nat Commun, vol.9, issue.1, p.3317, 2018.

K. Pervolaraki, R. Talemi, S. , A. D. Bormann, F. Bamford et al., Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance, PLoS Pathog, vol.14, issue.11, p.6287881, 2018.

S. Patil, M. Fribourg, Y. Ge, M. Batish, S. Tyagi et al., Single-cell analysis shows that paracrine signaling by first responder cells shapes the interferon-beta response to viral infection, Sci Signal, vol.8, issue.363, p.16, 2015.

S. R. Talemi and T. Hofer, Antiviral interferon response at single-cell resolution, Immunol Rev, vol.285, issue.1, pp.72-80, 2018.

U. Rand, M. Rinas, J. Schwerk, G. Nohren, M. Linnes et al., Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response, Mol Syst Biol, vol.8, p.3377992, 2012.

V. D. Menachery, A. J. Eisfeld, A. Schafer, L. Josset, A. C. Sims et al., Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses, mBio, vol.5, issue.3, pp.1174-1188, 2014.

P. Central and P. , , p.4030454

G. Bocharov, R. Zust, L. Cervantes-barragan, T. Luzyanina, E. Chiglintsev et al., A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections, PLoS Pathog, vol.6, issue.7, 2010.

P. Central and P. ,

E. De-wit, N. Van-doremalen, D. Falzarano, and V. J. Munster, SARS and MERS: recent insights into emerging coronaviruses, Nat Rev Microbiol, vol.14, issue.8, pp.523-557, 2016.

J. S. Peiris, C. M. Chu, V. C. Cheng, K. S. Chan, I. F. Hung et al., Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study, Lancet, vol.361, issue.9371, pp.13412-13417, 2003.

R. S. Wong, A. Wu, K. F. To, N. Lee, C. W. Lam et al., Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis, BMJ, vol.326, issue.7403, pp.1358-62, 2003.

,

R. Channappanavar, A. R. Fehr, R. Vijay, M. Mack, J. Zhao et al., Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice, Cell Host Microbe, vol.19, issue.2, p.4752723, 2016.

Y. L. Lau and J. S. Peiris, Pathogenesis of severe acute respiratory syndrome, Curr Opin Immunol, vol.17, issue.4, pp.404-414, 2005.

J. M. Nicholls, L. L. Poon, K. C. Lee, W. F. Ng, S. T. Lai et al., Lung pathology of fatal severe acute respiratory syndrome, Lancet, vol.361, issue.9371, pp.13413-13420, 2003.

A. W. Lo, N. L. Tang, and K. F. To, How the SARS coronavirus causes disease: host or organism?, J Pathol, vol.208, issue.2, pp.142-51, 2005.

R. Channappanavar, A. R. Fehr, J. Zheng, C. Wohlford-lenane, J. E. Abrahante et al., IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes, J Clin Invest, vol.130, pp.3625-3664, 2019.

P. Central and P. , , p.6715373

B. Reizis, Plasmacytoid Dendritic Cells: Development, Regulation, and Function, Immunity, vol.50, issue.1, p.6342491, 2019.

B. Webster, S. Assil, and M. Dreux, Cell-Cell Sensing of Viral Infection by Plasmacytoid Dendritic Cells, J Virol, vol.90, issue.22, p.5105643, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01909011

L. Cervantes-barragan, K. L. Lewis, S. Firner, V. Thiel, S. Hugues et al., Plasmacytoid dendritic cells control T-cell response to chronic viral infection, Proc Natl Acad Sci, vol.109, issue.8, pp.3012-3019, 2012.

M. Swiecki, S. Gilfillan, W. Vermi, Y. Wang, and M. Colonna, Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual, Immunity, vol.33, issue.6, p.3588567, 2010.

E. Decembre, S. Assil, M. L. Hillaire, W. Dejnirattisai, J. Mongkolsapaya et al., Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells, PLoS Pathog, vol.10, issue.10, p.4207819, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078023

E. Esashi, M. Bao, Y. H. Wang, W. Cao, and Y. J. Liu, PACSIN1 regulates the TLR7/9-mediated type I interferon response in plasmacytoid dendritic cells, Eur J Immunol, vol.42, issue.3, p.3656478, 2012.

A. L. Blasius, C. N. Arnold, P. Georgel, S. Rutschmann, Y. Xia et al., AP-3, and Hermansky-Pudlak syndrome proteins are required for Toll-like receptor signaling in plasmacytoid dendritic cells, Proc Natl Acad Sci U S A, vol.107, issue.46, pp.19973-19981, 2010.

M. Sasai, M. M. Linehan, and A. Iwasaki, Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science, vol.329, pp.1530-1534, 2010.

P. Central and P. , , p.3063333

B. Webster, S. W. Werneke, B. Zafirova, S. This, S. Coleon et al., Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses, Elife, vol.7, p.6008049, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01822838

S. Assil, S. Coleon, C. Dong, E. Decembre, L. Sherry et al., Plasmacytoid Dendritic Cells and Infected Cells Form an Interferogenic Synapse Required for Antiviral Responses, Cell Host Microbe, vol.25, issue.5, pp.730-775, 2019.

L. Cervantes-barragan, R. Zust, F. Weber, M. Spiegel, K. S. Lang et al., Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon, Blood, vol.109, issue.3, pp.1131-1138, 2007.

J. Chen, Y. F. Lau, E. W. Lamirande, C. D. Paddock, J. H. Bartlett et al., Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection, J Virol, vol.84, issue.3, p.2812346, 2009.

J. Cinatl, B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau et al., Treatment of SARS with human interferons, Lancet, vol.362, issue.9380, p.7112413, 2003.

L. E. Hensley, L. E. Fritz, P. B. Jahrling, C. L. Karp, J. W. Huggins et al., Interferon-beta 1a and SARS coronavirus replication, Emerg Infect Dis, vol.10, issue.2, p.3322919, 2004.

U. Stroher, A. Dicaro, Y. Li, J. E. Strong, F. Aoki et al., Severe acute respiratory syndromerelated coronavirus is inhibited by interferon-alpha, J Infect Dis, vol.189, issue.7, p.7109643, 2004.

D. Falzarano, E. De-wit, C. Martellaro, J. Callison, V. J. Munster et al., Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin, Sci Rep, vol.3, p.3629412, 2013.

A. H. De-wilde, V. S. Raj, D. Oudshoorn, T. M. Bestebroer, S. Van-nieuwkoop et al., MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment, J Gen Virol, vol.94, p.3749523, 2013.

K. G. Lokugamage, A. Hage, C. Schindewolf, R. Rajsbaum, and V. D. Menachery, SARS-CoV-2 is sensitive to type I interferon pretreatment

E. Mantlo, N. Bukreyeva, J. Maruyama, S. Paessler, and C. Huang, Antiviral activities of type I interferons to SARS-CoV-2 infection, Antiviral Res, vol.179, p.104811, 2020.

X. Xie, A. Muruato, K. G. Lokugamage, K. Narayanan, X. Zhang et al., An Infectious cDNA Clone of SARS-CoV-2, Cell Host Microbe, vol.27, issue.5, p.7153529, 2020.

J. F. Chan, Y. Yao, M. L. Yeung, W. Deng, L. Bao et al., Treatment With Lopinavir/Ritonavir or Interferon-beta1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model of Common Marmoset, J Infect Dis, vol.212, issue.12, p.7107395, 2015.

T. P. Sheahan, A. C. Sims, S. R. Leist, A. Schafer, J. Won et al., Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun, vol.11, p.31924756, 2020.

P. Central and P. , , p.6954302

Y. Xiong, Y. Liu, L. Cao, D. Wang, M. Guo et al., Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients, Emerg Microbes Infect, vol.9, issue.1, p.7170362, 2020.

Z. Zhou, L. Ren, L. Zhang, J. Zhong, Y. Xiao et al., Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients, Cell Host Microbe, vol.27, issue.6, p.7196896, 2020.

M. M. Lamers, J. Beumer, J. Van-der-vaart, K. Knoops, J. Puschhof et al., SARS-CoV-2 productively infects human gut enterocytes, p.7199907

A. F. Carlin, E. A. Vizcarra, E. Branche, K. M. Viramontes, L. Suarez-amaran et al., Deconvolution of pro-and antiviral genomic responses in Zika virus-infected and bystander macrophages, Proc Natl Acad Sci U S A, vol.115, issue.39, p.6166801, 2018.

V. V. Rezelj, L. I. Levi, and M. Vignuzzi, The defective component of viral populations, Curr Opin Virol, vol.33, pp.74-80, 2018.

C. C. Bailey, G. Zhong, I. C. Huang, and M. Farzan, IFITM-Family Proteins: The Cell's First Line of Antiviral Defense, Annu Rev Virol, vol.1, pp.261-83, 2014.

F. Wrensch, M. Winkler, and S. Pohlmann, IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms, Viruses, vol.6, issue.9, p.4189045, 2014.

I. C. Huang, C. C. Bailey, J. L. Weyer, S. R. Radoshitzky, M. M. Becker et al., Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus, PLoS Pathog, vol.7, issue.1, p.3017121, 2011.

J. He, D. Feng, S. J. De-vlas, H. Wang, A. Fontanet et al., Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study, BMC Infect Dis, vol.6, p.1550407, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00089620

C. E. Comar, S. A. Goldstein, Y. Li, B. Yount, R. S. Baric et al., Antagonism of dsRNA-Induced Innate Immune Pathways by NS4a and NS4b Accessory Proteins during MERS Coronavirus Infection, mBio, vol.10, issue.2, p.6437052, 2019.

R. Nchioua, D. Kmiec, J. Mü-ller, C. Conzelmann, R. Groß et al., The Zinc Finger Antiviral Protein restricts SARS-CoV-2. bioRxiv 134379

D. Ghimire, M. Rai, and R. Gaur, Novel host restriction factors implicated in HIV-1 replication, J Gen Virol, vol.99, issue.4, pp.435-481, 2018.

J. W. Schoggins, S. J. Wilson, M. Panis, M. Y. Murphy, C. T. Jones et al., A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, vol.472, issue.7344, p.3409588, 2011.

S. J. Wilson, J. W. Schoggins, T. Zang, S. B. Kutluay, N. Jouvenet et al., Inhibition of HIV-1 particle assembly by 2',3'-cyclic-nucleotide 3'-phosphodiesterase, Cell Host Microbe, vol.12, issue.4, p.3498451, 2012.

J. W. Schoggins, D. A. Macduff, N. Imanaka, M. D. Gainey, B. Shrestha et al., Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity, Nature, vol.505, issue.7485, p.4077721, 2014.

K. B. Mar, N. R. Rinkenberger, I. N. Boys, J. L. Eitson, M. B. Mcdougal et al., LY6E mediates an evolutionarily conserved enhancement of virus infection by targeting a late entry step, Nat Commun, vol.9, issue.1, p.30190477, 2018.

P. Central and P. , , p.6127192

S. Pfaender, K. B. Mar, E. Michailidis, A. Kratzel, D. Hirt et al., LY6E impairs coronavirus fusion and confers immune control of viral disease, p.2020

,

S. Bhattacharyya, A. Zagorska, E. D. Lew, B. Shrestha, C. V. Rothlin et al., Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors, Cell Host Microbe, vol.14, issue.2, pp.136-183, 2013.

P. Central and P. , , p.3779433

B. Monel, A. A. Compton, T. Bruel, S. Amraoui, J. Burlaud-gaillard et al., Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells, EMBO J, vol.36, issue.12, p.5470047, 2017.

L. Meertens, X. Carnec, M. P. Lecoin, R. Ramdasi, F. Guivel-benhassine et al., The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry, Cell Host Microbe, vol.12, issue.4, pp.544-57, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01110072

X. Zhao, F. Guo, F. Liu, A. Cuconati, J. Chang et al., Interferon induction of IFITM proteins promotes infection by human coronavirus OC43, Proc Natl Acad Sci, vol.111, issue.18, p.4020042, 2014.

M. Hoffmann, H. Kleine-weber, S. Schroeder, N. Kruger, T. Herrler et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, vol.181, issue.2, p.7102627, 2020.

C. Ziegler, S. J. Allon, S. K. Nyquist, I. M. Mbano, V. N. Miao et al., SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues, Cell, vol.181, issue.5, p.7252096, 2020.

P. Wang and Y. Cheng, Increasing Host Cellular Receptor-Angiotensin-Converting Enzyme 2 (ACE2) Expression by Coronavirus may Facilitate 2019-nCoV Infection, p.963348

B. Morgenstern, M. Michaelis, P. C. Baer, H. W. Doerr, and J. Cinatl, Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines, Biochem Biophys Res Commun, vol.326, issue.4, pp.905-913, 2005.

P. Central and P. , , p.7092851

C. Scagnolari, E. Vicenzi, F. Bellomi, M. G. Stillitano, D. Pinna et al., Increased sensitivity of SARScoronavirus to a combination of human type I and type II interferons, Antivir Ther, vol.9, issue.6, pp.1003-1014, 2004.

Y. M. Arabi, S. Shalhoub, Y. Mandourah, F. Al-hameed, A. et al., Ribavirin and Interferon Therapy for Critically Ill Patients With Middle East Respiratory Syndrome: A Multicenter Observational Study, Clin Infect Dis, vol.70, issue.9, pp.1837-1881, 2020.

A. S. Omrani, M. M. Saad, K. Baig, A. Bahloul, M. Abdul-matin et al., Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study, Lancet Infect Dis, vol.14, issue.11, p.7106357, 2014.

L. J. Stockman, R. Bellamy, and P. Garner, SARS: systematic review of treatment effects, PLoS Med, vol.3, issue.9, p.1564166, 2006.

M. R. Loutfy, L. M. Blatt, K. A. Siminovitch, S. Ward, B. Wolff et al., Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study, JAMA, vol.290, issue.24, pp.3222-3230, 2003.

S. Shalhoub, F. Farahat, A. , A. Simhairi, R. Shamma et al., IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study, J Antimicrob Chemother, vol.70, issue.7, pp.2129-2161, 2015.

B. L. Haagmans, T. Kuiken, B. E. Martina, R. A. Fouchier, G. F. Rimmelzwaan et al., Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques, Nat Med, vol.10, issue.3, p.7095986, 2004.

J. A. Al-tawfiq, H. Momattin, J. Dib, and Z. A. Memish, Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study, Int J Infect Dis, vol.20, p.7110882, 2014.

I. F. Hung, K. C. Lung, E. Y. Tso, R. Liu, T. W. Chung et al., Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial, Lancet, vol.395, issue.20, pp.31042-31046, 2020.

J. Dhanani, J. F. Fraser, H. K. Chan, J. Rello, J. Cohen et al., Fundamentals of aerosol therapy in critical care, Crit Care, vol.20, issue.1, p.269, 2016.

P. Central and P. , , p.5054555

B. L. Laube, The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination: an update, Transl Respir Med, vol.2, 2014.

P. Central and P. ,

Q. Zhou, V. Chen, C. P. Shannon, X. Wei, X. Xiang et al., Interferon-?2b Treatment for COVID-19, Frontiers in Immunology, vol.11, issue.11, p.1061, 2020.

E. Andreakos and S. Tsiodras, COVID-19: lambda interferon against viral load and hyperinflammation, EMBO Mol Med, vol.12, issue.6, p.12465, 2020.

P. Central and P. , , p.7267110

T. R. O'brien, D. L. Thomas, S. S. Jackson, L. Prokunina-olsson, R. P. Donnelly et al., Weak Induction of Interferon Expression by SARS-CoV-2 Supports Clinical Trials of Interferon Lambda to Treat Early COVID-19, Clin Infect Dis, p.453, 2020.

P. Central and P. , , p.7184357

L. Prokunina-olsson, A. N. Dickenson, R. E. Durbin, J. E. Glenn, J. S. Hartmann et al., COVID-19 and emerging viral infections: The case for interferon lambda, J Exp Med, vol.217, issue.5, p.7155807, 2020.

A. Broggi, F. Granucci, and I. Zanoni, Type III interferons: Balancing tissue tolerance and resistance to pathogen invasion, J Exp Med, vol.217, issue.1, p.7037241, 2020.

I. E. Galani, V. Triantafyllia, E. E. Eleminiadou, O. Koltsida, A. Stavropoulos et al., Interferon-lambda Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Fitness, Immunity, vol.46, issue.5, pp.875-90, 2017.

E. Andreakos, M. Salagianni, I. E. Galani, and O. Koltsida, Interferon-lambdas: Front-Line Guardians of Immunity and Homeostasis in the Respiratory Tract, Front Immunol, vol.8, p.1232, 2017.

M. Mordstein, E. Neugebauer, V. Ditt, B. Jessen, T. Rieger et al., Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections, J Virol, vol.84, issue.11, p.2876583, 2010.

M. L. Stanifer, C. Kee, C. M. Triana, S. Mukenhirn, M. Kraeusslich et al., Critical role of type III interferon in controlling SARS-CoV-2 infection, replication and spread in primary human intestinal epithelial cells, p.59667

A. Broggi, S. Ghosh, B. Sposito, R. Spreafico, F. Balzarini et al., Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020: eabc3545

W. Cao, L. Bover, M. Cho, X. Wen, S. Hanabuchi et al., Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction, J Exp Med, vol.206, issue.7, pp.1603-1617, 2009.

J. D. O'neil, T. J. Owen, V. H. Wood, K. L. Date, R. Valentine et al., Epstein-Barr virusencoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro, J Gen Virol, vol.89, pp.2833-2875, 2008.

N. Smith, N. Pietrancosta, S. Davidson, J. Dutrieux, L. Chauveau et al., Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement, Nat Commun, vol.8, p.5309800, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02075366

E. De-clercq, Mozobil(R) (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration, Antivir Chem Chemother, vol.27, p.6379795, 2019.

G. Maarifi, N. Smith, S. Maillet, O. Moncorge, C. Chamontin et al., TRIM8 is required for virusinduced IFN response in human plasmacytoid dendritic cells, Sci Adv, vol.5, issue.11, p.6867881, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02404478

Y. Nakatsu, Y. Matsunaga, K. Ueda, T. Yamamotoya, Y. Inoue et al., Development of Pin1 inhibitors and their potential as therapeutic agents, Curr Med Chem, vol.27, issue.20, pp.3314-3329, 2020.

S. Davidson, M. K. Maini, and A. Wack, Disease-promoting effects of type I interferons in viral, bacterial, and coinfections, J Interferon Cytokine Res, vol.35, issue.4, p.4389918, 2015.

D. Marsolais, B. Hahm, K. B. Walsh, K. H. Edelmann, D. Mcgavern et al., A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection, Proc Natl Acad Sci U S A, vol.106, issue.5, pp.1560-1565, 2009.

J. R. Teijaro, K. B. Walsh, S. Cahalan, D. M. Fremgen, E. Roberts et al., Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection, Cell, vol.146, issue.6, p.3176439, 2011.

A. Grifoni, D. Weiskopf, S. I. Ramirez, J. Mateus, J. M. Dan et al., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals, Cell, vol.181, issue.7, pp.1489-1501, 2020.

P. Central and P. , , p.7237901