J. D. Sipe and A. S. Cohen, Review: history of the amyloid fibril, J Struct Biol, vol.130, pp.88-98, 2000.

M. Sunde, L. C. Serpell, M. Bartlam, P. E. Fraser, M. B. Pepys et al., Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J Mol Biol, vol.273, pp.729-768, 1997.

J. N. Buxbaum and R. P. Linke, A molecular history of the amyloidoses, J Mol Biol, vol.421, pp.142-59, 2012.

M. D. Benson, J. N. Buxbaum, D. S. Eisenberg, G. Merlini, M. J. Saraiva et al., Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee, Amyloid, vol.25, issue.4, pp.215-219, 2018.

R. A. Kyle, Amyloidosis: a convoluted story, Br J Haematol, vol.114, pp.529-538, 2001.

D. M. Fowler, A. V. Koulov, W. E. Balch, and J. W. Kelly, Functional amyloid-from bacteria to humans, Trends Biochem Sci, vol.32, pp.217-224, 2007.

L. Christensen, L. M. Hansen, K. Finster, G. Christiansen, P. H. Nielsen et al., The sheaths of Methanospirillum are made of a new type of amyloid protein, Front Microbiol, vol.9, p.2729, 2018.

C. Pham, A. H. Kwan, and M. Sunde, Functional amyloid: widespread in Nature, diverse in purpose, Essays Biochem, vol.56, pp.207-219, 2014.

D. Romero and R. Kolter, Functional amyloids in bacteria, Int Microbiol, vol.17, issue.2, pp.65-73, 2014.

R. B. Wickner, F. P. Shewmaker, D. A. Bateman, H. K. Edskes, A. Gorkovskiy et al., Yeast prions: structure, biology, and prion-handling systems, Microbiol Mol Biol Rev, vol.79, pp.1-17, 2015.

D. L. Holmes, A. K. Lancaster, S. Lindquist, and R. Halfmann, Heritable remodeling of yeast multicellularity by an environmentally responsive prion, Cell, vol.153, pp.153-165, 2013.

G. Suzuki, N. Shimazu, and M. Tanaka, A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress, Science, vol.336, pp.355-359, 2012.

D. Otzen and R. Riek, Functional amyloids, Cold Spring Harb Perspect Biol, vol.11, 2019.

R. A. Kyle, Amyloidosis: a convoluted story, Br J Haematol, vol.114, issue.3, pp.529-538, 2001.

P. Kooiman, Amyloids of plant seeds, Nature, vol.179, issue.4550, pp.107-109, 1957.

A. Hoth, W. Blaschek, and G. Franz, Xyloglucan (amyloid) formation in the cotyledons of Tropaeolum majus L. seeds, Plant Cell Rep, vol.5, issue.1, pp.9-12, 1986.

A. I. Sulatskaya, A. A. Maskevich, I. M. Kuznetsova, V. N. Uversky, and K. K. Turoverov, Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils, PLoS ONE, vol.5, issue.10, p.15385, 2010.

N. J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nat Protoc, vol.1, issue.6, pp.2876-2890, 2006.

M. Kjaergaard, A. B. Nørholm, R. Hendus-altenburger, S. F. Pedersen, F. M. Poulsen et al., Temperature-dependent structural changes in intrinsically disordered proteins: formation of ?-helices or loss of polyproline II?, Protein Sci, vol.19, issue.8, pp.1555-1564, 2010.

N. Sreerama and R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set, Anal Biochem, vol.287, issue.2, pp.252-260, 2000.

D. Ghosh, P. K. Singh, S. Sahay, N. N. Jha, R. S. Jacob et al., Structure based aggregation studies reveal the presence of helix-rich intermediate during ?-synuclein aggregation, Sci Rep, vol.5, p.9228, 2015.

T. Harada and R. Kuroda, CD measurements of ?-amyloid (1-40) and (1-42) in the condensed phase. Biopolymers, vol.95, pp.127-134, 2011.

J. Juá-rez, P. Taboada, and V. Mosquera, Existence of different structural intermediates on the fibrillation pathway of human serum albumin, Biophys J, vol.96, issue.6, pp.2353-2370, 2009.

H. Puchtler, F. Sweat, and M. Levine, On the binding of Congo red by amyloid, J Histochem Cytochem, vol.10, pp.355-364, 1962.

A. I. Sulatskaya, I. M. Kuznetsova, and K. K. Turoverov, Interaction of thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye, J Phys Chem B, vol.115, issue.39, pp.11519-11524, 2011.

A. I. Sulatskaya, A. V. Lavysh, A. A. Maskevich, I. M. Kuznetsova, and K. K. Turoverov, Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils, Sci Rep, vol.7, p.28526838, 2017.

D. S. Eisenberg and M. R. Sawaya, Structural studies of amyloid proteins at the molecular level, Annu Rev Biochem, vol.86, pp.69-95, 2017.

K. P. Scherpelz, J. X. Lu, R. Tycko, and S. C. Meredith, Preparation of amyloid fibrils seeded from brain and meninges, Methods in molecular biology, pp.299-312, 2016.

D. M. Fowler, A. V. Koulov, A. , C. Marks, M. S. Balch et al., Functional amyloid formation within mammalian tissue, PLoS Biol, vol.4, issue.1, p.6, 2006.

M. I. Ivanova, M. R. Sawaya, M. Gingery, A. Attinger, and D. Eisenberg, An amyloid-forming segment of ?2-microglobulin suggests a molecular model for the fibril, Proc Natl Acad Sci, issue.29, pp.10584-10589, 2004.

L. C. Serpell, J. Berriman, R. Jakes, M. Goedert, and R. A. Crowther, Fiber diffraction of synthetic ?-synuclein filaments shows amyloid-like cross-? conformation, Proc Natl Acad Sci USA, vol.97, issue.9, pp.4897-4902, 2000.

H. Ramshini, C. Parrini, A. Relini, M. Zampagni, B. Mannini et al., Large proteins have a great tendency to aggregate but a low propensity to form amyloid fibrils, PLoS ONE, vol.6, issue.1, p.16075, 2011.

S. K. Maji, M. H. Perrin, M. R. Sawaya, S. Jessberger, K. Vadodaria et al., Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, vol.325, issue.5938, pp.328-332, 2009.

K. Papanikolopoulou, G. Schoehn, V. Forge, V. T. Forsyth, C. Riekel et al., Amyloid fibril formation from sequences of a natural ?-structured fibrous protein, the adenovirus fiber, J Biol Chem, vol.280, issue.4, pp.2481-2490, 2005.

M. Sunde and C. Blake, The structure of amyloid fibrils by electron microscopy and X-ray diffraction, Advances in protein chemistry, vol.50, pp.123-159, 1997.

V. Sivanathan and A. Hochschild, A bacterial export system for generating extracellular amyloid aggregates, Nat Protoc, vol.8, issue.7, pp.1381-1390, 2013.

M. J. Chrispeels, T. Higgins, and D. Spencer, Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons, J Cell Biol, vol.93, issue.2, pp.306-313, 1982.

L. A. Rubio, A. Pé-rez, R. Ruiz, M. Á. Guzmán, I. Aranda-olmedo et al., Characterization of pea (Pisum sativum) seed protein fractions, J Sci Food Agric, vol.94, issue.2, pp.280-287, 2014.

A. C. Ribeiro, S. V. Monteiro, B. M. Carrapiço, and R. B. Ferreira, Are vicilins another major class of legume lectins?, Molecules, vol.19, issue.12, pp.20350-20373, 2014.

J. R. Parreira, J. Bouraada, M. A. Fitzpatrick, S. Silvestre, D. Silva et al., Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.), J Proteomics, vol.143, pp.188-198, 2016.

J. R. Parreira, A. Balestrazzi, P. Fevereiro, J. Araú, and . Sds, Maintaining genome integrity during seed development in Phaseolus vulgaris L.: evidence from a transcriptomic profiling study, Genes, vol.9, issue.10, p.463, 2018.

M. Van-zanten, A. Carles, Y. Li, and W. Soppe, Control and consequences of chromatin compaction during seed maturation in Arabidopsis thaliana, Plant Signal Behav, vol.7, issue.3, pp.338-341, 2012.

M. Barac, S. Cabrilo, M. Pesic, S. Stanojevic, S. Zilic et al., Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes, Int J Mol Sci, vol.11, issue.12, pp.4973-4990, 2010.

E. N. Tzitzikas, J. P. Vincken, D. Groot, J. Gruppen, H. Visser et al., Genetic variation in pea seed globulin composition, J Agric Food Chem, vol.54, issue.2, pp.425-433, 2006.

M. Garnczarska, T. Zalewski, and ?. Wojtyla, A comparative study of water distribution and dehydrin protein localization in maturing pea seeds, J Plant Physiol, vol.165, issue.18, pp.1940-1946, 2008.

T. S. Kalebina, T. A. Plotnikova, A. A. Gorkovskii, I. O. Selyakh, O. V. Galzitskaya et al., Amyloid-like properties of Saccharomyces cerevisiae cell wall glucantransferase Bgl2p: prediction and experimental evidences, Prion, vol.2, issue.2, pp.91-96, 2008.

T. A. Ryzhova, J. V. Sopova, S. P. Zadorsky, V. A. Siniukova, A. V. Sergeeva et al., Screening for amyloid proteins in the yeast proteome, Curr Genet, vol.64, issue.2, pp.469-478, 2018.

N. Hazeki, T. Tukamoto, J. Goto, and I. Kanazawa, Formic acid dissolves aggregates of an N-terminal huntingtin fragment containing an expanded polyglutamine tract: applying to quantification of protein components of the aggregates, Biochem Biophys Res Commun, vol.277, issue.2, pp.386-393, 2000.

E. J. Danoff and K. G. Fleming, Aqueous, unfolded OmpA forms amyloid-like fibrils upon self-association, PLoS ONE, vol.10, issue.7, p.132301, 2015.

J. Rajan, T. C. Santiago, R. Singaravel, and S. Ignacimuthu, Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid, Biotechnol Lett, vol.38, p.26712371, 2016.

M. Serra-batiste, M. Ninot-pedrosa, M. Bayoumi, M. Gairí, G. Maglia et al., A?42 assembles into specific ?-barrel pore-forming oligomers in membrane-mimicking environments, Proc Natl Acad Sci USA, vol.113, issue.39, pp.10866-10871, 2016.

Y. Sun, X. Ge, Y. Xing, and B. Wang, Ding F. ?-barrel oligomers as common intermediates of peptides selfassembling into cross-? aggregates, Sci Rep, vol.8, p.10353, 2018.

J. Czubinski, J. Barciszewski, M. Gilski, K. Szpotkowski, J. Debski et al., Structure of ?-conglutin: insight into the quaternary structure of 7S basic globulins from legumes, Acta Crystallogr Sect D Biol Crystallogr, vol.71, issue.2, pp.224-238, 2015.

S. L. Bartelt-hunt, J. C. Bartz, and S. E. Saunders, Animals, humans and the environment, Prions and diseases, vol.2

, , pp.89-101, 2013.

J. E. Podrabsky, J. F. Carpenter, and S. C. Hand, Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers, Am J Physiol Regul Integr Comp Physiol, vol.280, pp.123-131, 2001.

S. K. Maji, M. H. Perrin, M. R. Sawaya, S. Jessberger, K. Vadodaria et al., Functional amyloids as natural storage of peptide hormones in pituitary secretory granules, Science, vol.325, pp.328-332, 2009.

K. A. Wilson and A. Tan-wilson, Proteases catalyzing vicilin cleavage in developing pea (Pisum sativum L.) seeds, J Plant Physiol, vol.224, pp.86-94, 2018.

M. P. Sales, I. R. Gerhardt, M. F. Grossi-de-sá, and J. Xavier-filho, Do legume storage proteins play a role in defending seeds against bruchids?, Plant Physiol, vol.124, issue.2, pp.515-522, 2000.

V. M. Gomes, M. I. Mosqueda, A. Blanco-labra, M. P. Sales, K. Fernandes et al., Vicilin storage proteins from Vigna unguiculata (Legume) seeds inhibit fungal growth, J Agric Food Chem, vol.45, issue.10, pp.4110-4115, 2002.

T. L. Rose, V. M. Gomes, D. Cunha, M. Fernandes, K. Xavier-filho et al., Effect of sugars on the association between cowpea vicilin (7S storage proteins) and fungal cells, Biocell, vol.27, issue.2, pp.173-179, 2003.

R. T. Lee and Y. C. Lee, Affinity enhancement by multivalent lectin-carbohydrate interaction, Glycoconjugate J, vol.17, issue.7-9, pp.543-551, 2000.

N. Banerjee, S. Sengupta, A. Roy, P. Ghosh, K. Das et al., Functional alteration of a dimeric insecticidal lectin to a monomeric antifungal protein correlated to its oligomeric status, PLoS ONE, vol.6, issue.4, 2011.

V. Vetri, R. Carrotta, P. Picone, D. Carlo, M. Militello et al., Concanavalin A aggregation and toxicity on cell cultures, Biochim Biophys Acta, vol.1804, issue.1, pp.173-183, 2010.

M. Â. Aranda-souza, V. De-lorena, S. Correia, M. T. Pereira-neves, A. De-figueiredo et al., A C-type lectin from Bothrops leucurus snake venom forms amyloid-like aggregates in RPMI medium and are efficiently phagocytosed by peritoneal macrophages, Toxicon, vol.157, pp.93-100, 2019.

J. Akkerdaas, M. Totis, B. Barnett, E. Bell, T. Davis et al., Protease resistance of food proteins: a mixed picture for predicting allergenicity but a useful tool for assessing exposure, Clin Transl Allergy, vol.8, p.30116520, 2018.

R. Sanchez-monge, G. Lopez-torrejón, C. Y. Pascual, J. Varela, M. Martin-esteban et al., Vicilin and convicilin are potential major allergens from pea, Clin Exp Allergy, vol.34, issue.11, pp.1747-1753, 2004.

D. Mouzo, J. Bernal, M. López-pedrouso, D. Franco, and C. Zapata, Advances in the biology of seed and vegetative storage proteins based on two-dimensional electrophoresis coupled to mass spectrometry, Molecules, vol.23, issue.10, p.2462, 2018.

P. R. Shewry, J. A. Napier, and A. S. Tatham, Seed storage proteins: structures and biosynthesis, Plant Cell, vol.7, issue.7, pp.945-956, 1995.

R. Bravo, M. Arimon, J. J. Valle-delgado, R. García, N. Durany et al., Sulfated polysaccharides promote the assembly of amyloid ?1-42 peptide into stable fibrils of reduced cytotoxicity, J Biol Chem, vol.283, issue.47, pp.32471-32483, 2008.

N. Parmar, N. Singh, A. Kaur, A. S. Virdi, and S. Thakur, Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea, Food Res Int, vol.89, pp.526-532, 2016.

A. Y. Borisov, S. M. Rozov, V. E. Tsyganov, E. V. Morzhina, V. K. Lebsky et al., Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.), Mol Gen Genet, vol.254, issue.5, pp.592-598, 1997.

Y. V. Malovichko, O. Y. Shtark, E. N. Vasileva, A. A. Nizhnikov, and K. S. Antonets, Transcriptomic insights into mechanisms of early seed maturation in the garden pea, Pisum sativum L.). Cells, vol.9, p.779, 2020.

,

C. M. Knott, A key for stages of development of the pea (Pisum sativum), Ann Appl Biol, vol.111, issue.1, pp.233-245, 1987.

K. S. Antonets, M. V. Belousov, M. E. Belousova, and A. A. Nizhnikov, The Gln3 transcriptional regulator of Saccharomyces cerevisiae manifests prion-like properties upon overproduction, Biochemistry (Mosc), vol.84, issue.4, pp.441-451, 2019.

D. Hanahan, Techniques for transformation of E. coli, DNA cloning: a practical approach, vol.1, pp.109-135, 1985.

A. G. Matveenko, P. B. Drozdova, M. V. Belousov, S. E. Moskalenko, S. A. Bondarev et al., SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1, Gene Cell, vol.21, issue.12, pp.1290-1308, 2016.

T. R. Serio, A. G. Cashikar, J. J. Moslehi, A. S. Kowal, and S. L. Lindquist, Yeast prion [?+] and its determinant, Methods in enzymology, vol.309, pp.9043-9049, 1999.

K. Broersen, W. Jonckheere, J. Rozenski, A. Vandersteen, K. Pauwels et al., A standardized and biocompatible preparation of aggregate-free amyloid beta peptide for biophysical and biological studies of Alzheimer's disease, Protein Eng Des Sel, vol.24, issue.9, pp.743-750, 2011.

M. Torrent, M. I. Geli, and M. D. Ludevid, Storage-protein hydrolysis and protein-body breakdown in germinated Zea mays L. seeds, Planta, vol.180, issue.1, pp.90-95, 1989.

Y. Vladimirov and F. F. Litvin, Photobiology and spectroscopic methods, Handbook of general biophisics, p.8, 1964.

I. Tinoco, C. Bustamante, and M. F. Maestre, The optical activity of nucleic acids and their aggregates, Annu Rev Biophys Bioeng, vol.9, pp.107-141, 2003.

D. V. O'connor and D. Phillips, Time-correlated single photon counting, pp.37-54, 1984.

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J Soc Ind Appl Math, vol.11, pp.431-441, 1963.