S. Shipp, R. A. Adams, and K. J. Friston, Reflections on agranular architecture: predictive coding in the motor cortex, Trends Neurosci, vol.36, pp.706-716, 2013.

R. P. Rao and D. H. Ballard, Predictive coding in the visual cortex: a functional interpretation of some extraclassical receptive-field effects, Nat Neurosci, vol.2, pp.79-87, 1999.

L. Aitchison and M. Lengyel, With or without you: predictive coding and Bayesian inference in the brain, Curr Opin Neurobiol, vol.46, pp.219-227, 2017.

M. W. Spratling, A review of predictive coding algorithms, Brain Cogn, vol.112, pp.92-97, 2017.

R. Robert, A. , W. Allan, and R. , A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, Classical conditioning II: Current research and theory, pp.64-99, 1972.

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1998.

A. J. Yu and J. D. Cohen, Sequential effects: Superstition or rational behavior?, Adv Neural Inf Process Syst, vol.21, pp.1873-1880, 2008.

M. Heilbron and F. Meyniel, Confidence resets reveal hierarchical adaptive learning in humans, PLOS Computational Biology, vol.15, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02145648

T. Behrens, M. W. Woolrich, M. E. Walton, and M. Rushworth, Learning the value of information in an uncertain world, Nat Neurosci, vol.10, pp.1214-1221, 2007.

M. R. Nassar, R. C. Wilson, B. Heasly, and J. I. Gold, An Approximately Bayesian Delta-Rule Model Explains the Dynamics of Belief Updating in a Changing Environment, J Neurosci, vol.30, pp.12366-12378, 2010.

R. C. Wilson, M. R. Nassar, and J. I. Gold, A mixture of delta-rules approximation to bayesian inference in change-point problems, PLoS Comput Biol, vol.9, 2013.

C. D. Mathys, E. I. Lomakina, J. Daunizeau, S. Iglesias, K. H. Brodersen et al., Uncertainty in perception and the Hierarchical Gaussian Filter, Front Hum Neurosci, vol.8, 2014.

H. Ritz, M. R. Nassar, M. J. Frank, and A. Shenhav, A Control Theoretic Model of Adaptive Learning in Dynamic Environments, Journal of Cognitive Neuroscience, vol.30, pp.1405-1421, 2018.

V. Moens and A. Zénon, Learning and forgetting using reinforced Bayesian change detection, PLoS Comput Biol, vol.15, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02407890

F. Meyniel, D. Schlunegger, and S. Dehaene, The Sense of Confidence during Probabilistic Learning: A Normative Account, PLoS Comput Biol, vol.11, p.1004305, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02141610

A. Boldt, C. Blundell, D. Martino, and B. , Confidence modulates exploration and exploitation in value-based learning. Neurosci Conscious, 2019.

S. Iglesias, C. Mathys, K. H. Brodersen, L. Kasper, M. Piccirelli et al., Hierarchical prediction errors in midbrain and basal forebrain during sensory learning, Neuron, vol.80, pp.519-530, 2013.

F. Meyniel, M. Sigman, and Z. F. Mainen, Confidence as Bayesian Probability: From Neural Origins to Behavior, Neuron, vol.88, pp.78-92, 2015.

M. I. Garrido, C. Teng, J. A. Taylor, E. G. Rowe, and J. B. Mattingley, Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand, Science of Learning, vol.1, p.16006, 2016.

M. Heilbron and M. Chait, Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex? Neuroscience, vol.389, pp.54-73, 2018.

M. Maheu, S. Dehaene, and F. Meyniel, Brain signatures of a multiscale process of sequence learning in humans, Elife, vol.8, 2019.

J. Reimer, E. Froudarakis, C. R. Cadwell, D. Yatsenko, G. H. Denfield et al., Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness, Neuron, vol.84, pp.355-362, 2014.

H. Safaai, R. Neves, O. Eschenko, N. K. Logothetis, and S. Panzeri, Modeling the effect of locus coeruleus firing on cortical state dynamics and single-trial sensory processing, Proc Natl Acad Sci USA, vol.112, pp.12834-12839, 2015.

D. Zaldivar, A. Rauch, N. K. Logothetis, and J. Goense, Two distinct profiles of fMRI and neurophysiological activity elicited by acetylcholine in visual cortex, Proc Natl Acad Sci USA, vol.115, pp.12073-12082, 2018.

A. K. Engel and P. Fries, Beta-band oscillations-signalling the status quo?, Curr Opin Neurobiol, vol.20, pp.156-165, 2010.

B. Spitzer and S. Haegens, Beyond the Status Quo: A Role for Beta Oscillations in Endogenous Content (Re)Activation

J. F. Hipp, A. K. Engel, and M. Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron, vol.69, pp.387-396, 2011.

T. J. Baumgarten, A. Schnitzler, and J. Lange, Prestimulus Alpha Power Influences Tactile Temporal Perceptual Discrimination and Confidence in Decisions, Cereb Cortex, vol.26, pp.891-903, 2016.

W. Klimesch, P. Sauseng, and S. Hanslmayr, EEG alpha oscillations: the inhibition-timing hypothesis, Brain Res Rev, vol.53, pp.63-88, 2007.

G. Hahn, A. Ponce-alvarez, G. Deco, A. Aertsen, and A. Kumar, Portraits of communication in neuronal networks, Nat Rev Neurosci, vol.20, p.30552403, 2019.

L. Iemi, N. A. Busch, A. Laudini, S. Haegens, J. Samaha et al., Multiple mechanisms link prestimulus neural oscillations to sensory responses, Elife, vol.8, 2019.

E. M. Vazey, D. E. Moorman, A. , and G. , Phasic locus coeruleus activity regulates cortical encoding of salience information, Proc Natl Acad Sci USA, vol.115, pp.9439-9448, 2018.

X. Wang, Neurophysiological and computational principles of cortical rhythms in cognition, Physiol Rev, vol.90, pp.1195-1268, 2008.

G. Aston-jones and J. D. Cohen, An integratice theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance, Annual Review of Neuroscience, vol.28, pp.403-450, 2005.

C. Rodenkirch, Y. Liu, B. J. Schriver, and Q. Wang, Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics, Nat Neurosci, vol.22, p.30559472, 2019.

M. Siegel, T. H. Donner, and A. K. Engel, Spectral fingerprints of large-scale neuronal interactions, Nat Rev Neurosci, vol.13, pp.121-134, 2012.

M. Rouault, P. Dayan, and S. M. Fleming, Forming global estimates of self-performance from local confidence, Nat Commun, vol.10, p.30850612, 2019.

A. Kepecs, N. Uchida, H. A. Zariwala, and Z. F. Mainen, Neural correlates, computation and behavioural impact of decision confidence, Nature, vol.455, pp.227-231, 2008.

A. Pouget, J. Drugowitsch, and A. Kepecs, Confidence and certainty: distinct probabilistic quantities for different goals, Nat Neurosci, vol.19, pp.366-374, 2016.

D. Bang and S. M. Fleming, Distinct encoding of decision confidence in human medial prefrontal cortex, Proc Natl Acad Sci USA, vol.115, pp.6082-6087, 2018.

A. Koriat, The self-consistency model of subjective confidence, Psychological Review, vol.119, pp.80-113, 2012.

S. M. Fleming, J. Ryu, J. G. Golfinos, and K. E. Blackmon, Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions, Brain, vol.137, pp.2811-2822, 2014.

A. Kepecs and Z. F. Mainen, A computational framework for the study of confidence in humans and animals, Phil Trans R Soc B, vol.367, pp.1322-1337, 2012.

S. M. Fleming and N. D. Daw, Self-evaluation of decision-making: A general Bayesian framework for metacognitive computation, Psychol Rev, vol.124, pp.91-114, 2017.

J. Navajas, C. Hindocha, H. Foda, M. Keramati, P. E. Latham et al., The idiosyncratic nature of confidence, Nat Hum Behav, vol.1, p.29152591, 2017.

S. Chennu, V. Noreika, D. Gueorguiev, A. Blenkmann, S. Kochen et al., Expectation and Attention in Hierarchical Auditory Prediction, J Neurosci, vol.33, pp.11194-11205, 2013.

R. Auksztulewicz and K. Friston, Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study, Cereb Cortex, vol.25, pp.4273-4283, 2015.

F. Lecaignard, O. Bertrand, G. Gimenez, J. Mattout, and A. Caclin, Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy, Front Hum Neurosci, vol.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01823176

S. Vossel, C. Mathys, K. E. Stephan, and K. J. Friston, Cortical Coupling Reflects Bayesian Belief Updating in the Deployment of Spatial Attention, J Neurosci, vol.35, pp.11532-11542, 2015.

P. Vincent, T. Parr, D. Benrimoh, and K. J. Friston, With an eye on uncertainty: Modelling pupillary responses to environmental volatility, PLoS Comput Biol, vol.15, p.1007126, 2019.

D. Ostwald, B. Spitzer, M. Guggenmos, T. T. Schmidt, S. J. Kiebel et al., Evidence for neural encoding of Bayesian surprise in human somatosensation, NeuroImage, vol.62, pp.177-188, 2012.

D. Friedman, Y. M. Cycowicz, and H. Gaeta, The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty, Neuroscience & Biobehavioral Reviews, vol.25, pp.355-373, 2001.

P. Kok, P. Mostert, and F. P. De-lange, Prior expectations induce prestimulus sensory templates, Proc Natl Acad Sci, vol.114, pp.10473-10478, 2017.

F. Lecaignard, O. Bertrand, A. Caclin, and J. Mattout, Adaptive cortical processing of unattended sounds: neurocomputational underpinnings revealed by simultaneous EEG-MEG. bioRxiv. 2020; 501221

E. Eldar, J. D. Cohen, and Y. Niv, The effects of neural gain on attention and learning, Nat Neurosci, vol.16, pp.1146-1153, 2013.

O. Colizoli, J. W. De-gee, A. E. Urai, and T. H. Donner, Task-evoked pupil responses reflect internal belief states, Sci Rep, vol.8, p.30209335, 2018.

H. Salgado, M. Treviño, and M. Atzori, Layer-and area-specific actions of norepinephrine on cortical synaptic transmission, Brain Res, vol.1641, pp.163-176, 2016.

S. Joshi, Y. Li, R. M. Kalwani, and J. I. Gold, Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex, Neuron, vol.89, pp.221-234, 2016.

J. Reimer, M. J. Mcginley, Y. Liu, C. Rodenkirch, Q. Wang et al., Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex, Nat Commun, vol.7, p.13289, 2016.

M. J. Mcginley, S. V. David, and D. A. Mccormick, Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection, Neuron, vol.87, pp.179-192, 2015.

K. Krishnamurthy, M. R. Nassar, S. Sarode, and J. I. Gold, Arousal-related adjustments of perceptual biases optimize perception in dynamic environments, Nat Hum Behav, vol.1, 2017.

J. W. De-gee, T. Knapen, and T. H. Donner, Decision-related pupil dilation reflects upcoming choice and individual bias, PNAS, vol.111, pp.618-625, 2014.

J. W. De-gee, O. Colizoli, N. A. Kloosterman, T. Knapen, S. Nieuwenhuis et al., Dynamic modulation of decision biases by brainstem arousal systems, Elife, vol.6, 2017.

J. Van-kempen, G. M. Loughnane, D. P. Newman, S. P. Kelly, A. Thiele et al., Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal, Elife, vol.8, 2019.

R. C. Hoffing and A. R. Seitz, Pupillometry as a glimpse into the neurochemical basis of human memory encoding, J Cogn Neurosci, vol.27, pp.765-774, 2015.

T. Takeuchi, A. J. Duszkiewicz, A. Sonneborn, P. A. Spooner, M. Yamasaki et al., Locus coeruleus and dopaminergic consolidation of everyday memory, Nature, vol.537, pp.357-362, 2016.

A. Wagatsuma, T. Okuyama, C. Sun, L. M. Smith, K. Abe et al., Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context, Proc Natl Acad Sci USA, vol.115, pp.310-316, 2018.

V. Devauges and S. J. Sara, Activation of the noradrenergic system facilitates an attentional shift in the rat, Behav Brain Res, vol.39, pp.19-28, 1990.

E. Pulcu and M. Browning, Affective bias as a rational response to the statistics of rewards and punishments, Elife, vol.6, 2017.

T. U. Hauser, M. Allen, N. Purg, M. Moutoussis, G. Rees et al., Noradrenaline blockade specifically enhances metacognitive performance, Elife, vol.6, 2017.

L. Marshall, C. Mathys, D. Ruge, A. O. De-berker, P. Dayan et al., Pharmacological Fingerprints of Contextual Uncertainty, PLoS Biol, vol.14, p.1002575, 2016.

M. Jepma, S. Brown, P. R. Murphy, S. C. Koelewijn, B. De-vries et al., Noradrenergic and Cholinergic Modulation of Belief Updating, J Cogn Neurosci, pp.1-18, 2018.

A. M. Bastos, J. Vezoli, C. A. Bosman, J. Schoffelen, R. Oostenveld et al., Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels, Neuron, vol.85, pp.390-401, 2015.

T. J. Buschman and E. K. Miller, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science, vol.315, pp.1860-1862, 2007.

R. F. Salazar, N. M. Dotson, S. L. Bressler, and C. M. Gray, Content-Specific Fronto-Parietal Synchronization During Visual Working Memory, Science, vol.338, pp.1097-1100, 2012.

K. Limbach and P. M. Corballis, Prestimulus alpha power influences response criterion in a detection task, Psychophysiology, vol.53, pp.1154-1164, 2016.

C. Benwell, C. F. Tagliabue, D. Veniero, R. Cecere, S. Savazzi et al., Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance, vol.4, 2017.

M. Craddock, E. Poliakoff, W. El-deredy, E. Klepousniotou, and D. M. Lloyd, Pre-stimulus alpha oscillations over somatosensory cortex predict tactile misperceptions, Neuropsychologia, vol.96, pp.9-18, 2017.

L. Iemi, M. Chaumon, S. M. Crouzet, and N. A. Busch, Spontaneous Neural Oscillations Bias Perception by Modulating Baseline Excitability, J Neurosci, vol.37, pp.807-819, 2016.

S. Haegens, V. Ná-cher, A. Herná-ndez, R. Luna, O. Jensen et al., Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making, Proc Natl Acad Sci USA, vol.108, pp.10708-10713, 2011.

D. E. Surprise and !. , Surprise?, Psychophysiology, vol.18, pp.493-513, 1981.

A. Kok, On the utility of P3 amplitude as a measure of processing capacity, Psychophysiology, vol.38, pp.557-577, 2001.

J. Polich, Updating P300: An integrative theory of P3a and P3b, Clinical Neurophysiology, vol.118, pp.2128-2148, 2007.

T. A. Bekinschtein, S. Dehaene, B. Rohaut, F. Tadel, L. Cohen et al., Neural signature of the conscious processing of auditory regularities, PNAS, vol.106, pp.1672-1677, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01865884

F. Faugeras, B. Rohaut, N. Weiss, T. Bekinschtein, D. Galanaud et al., Event related potentials elicited by violations of auditory regularities in patients with impaired consciousness. Neuropsychologia, vol.50, pp.403-418, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00719338

A. Kolossa, B. Kopp, and T. Fingscheidt, A computational analysis of the neural bases of Bayesian inference, NeuroImage, vol.106, pp.222-237, 2015.

M. Strauss, J. D. Sitt, J. King, M. Elbaz, L. Azizi et al., Disruption of hierarchical predictive coding during sleep, Proc Natl Acad Sci USA, vol.112, pp.1353-1362, 2015.

L. Hong, J. M. Walz, and P. Sajda, Your eyes give you away: prestimulus changes in pupil diameter correlate with poststimulus task-related EEG dynamics, PLoS ONE, vol.9, 2014.

F. Lieder, J. Daunizeau, M. I. Garrido, K. J. Friston, and K. E. Stephan, Modelling Trial-by-Trial Changes in the Mismatch Negativity, PLoS Computational Biology, vol.9, 2013.

F. Meyniel, M. Maheu, and S. Dehaene, Human Inferences about Sequences: A Minimal Transition Probability Model, PLoS Comput Biol, vol.12, p.1005260, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02143083

S. Taulu and J. Simola, Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements, Phys Med Biol, vol.51, pp.1759-1768, 2006.

R. Oostenveld, P. Fries, M. E. Schoffelen, and J. Fieldtrip, Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data, vol.2011, pp.1-9, 2011.

A. M. Dale, B. Fischl, and M. I. Sereno, Cortical surface-based analysis. I. Segmentation and surface reconstruction, Neuroimage, vol.9, pp.179-194, 1999.

B. Fischl, M. I. Sereno, and A. M. Dale, Cortical surface-based analysis. II: Inflation, flattening, and a surfacebased coordinate system, Neuroimage, vol.9, pp.195-207, 1999.

F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, Brainstorm: a user-friendly application for MEG/ EEG analysis, Comput Intell Neurosci, 2011.

E. Maris and R. Oostenveld, Nonparametric statistical testing of EEG-and MEG-data, J Neurosci Methods, vol.164, pp.177-190, 2007.