, , 2020.

, Web Resources

G. Browser, Exome Variant Server

, Exome Aggregation Consortium

, Renal Genes

A. Vivante, S. Kohl, D. Y. Hwang, G. C. Dworschak, and F. Hildebrandt, Single-gene causes of congenital anomalies of the kidney and urinary tract (CAKUT) in humans, Pediatr. Nephrol, vol.29, pp.695-704, 2014.

A. T. Van-der-ven, A. Vivante, and F. Hildebrandt, Novel Insights into the Pathogenesis of Monogenic Congenital Anomalies of the Kidney and Urinary Tract, J. Am. Soc. Nephrol, vol.29, pp.36-50, 2018.

A. T. Van-der-ven, D. M. Connaughton, H. Ityel, N. Mann, M. Nakayama et al., Whole-Exome Sequencing Identifies Causative Mutations in Families with Congenital Anomalies of the Kidney and Urinary Tract, J. Am. Soc. Nephrol, vol.29, pp.2348-2361, 2018.

S. Weber, V. Moriniere, T. Knüppel, M. Charbit, J. Dusek et al., Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study, J. Am. Soc. Nephrol, vol.17, pp.2864-2870, 2006.

M. Rasmussen, L. Sunde, M. L. Nielsen, M. Ramsing, A. Petersen et al., Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies, Clin. Genet, vol.93, pp.860-869, 2018.

P. Kunapuli, C. S. Kasyapa, S. Chin, C. Caldas, and J. K. Cowell, ZNF198, a zinc finger protein rearranged in myeloproliferative disease, localizes to the PML nuclear bodies and interacts with SUMO-1 and PML, Exp. Cell Res, vol.312, pp.3739-3751, 2006.

C. B. Gocke, Y. , and H. , ZNF198 stabilizes the LSD1-CoREST-HDAC1 complex on chromatin through its MYMtype zinc fingers, vol.3, p.3255, 2008.

J. K. Warejko, W. Tan, A. Daga, D. Schapiro, J. A. Lawson et al., Whole Exome Sequencing of Patients with Steroid-Resistant Nephrotic Syndrome, Clin. J. Am. Soc. Nephrol, vol.13, pp.53-62, 2018.

A. Vivante, D. Y. Hwang, S. Kohl, J. Chen, S. Shril et al., Exome Sequencing Discerns Syndromes in Patients from Consanguineous Families with Congenital Anomalies of the Kidneys and Urinary Tract, J. Am. Soc. Nephrol, vol.28, pp.69-75, 2017.

D. G. Macarthur, T. A. Manolio, D. P. Dimmock, H. L. Rehm, J. Shendure et al., Guidelines for investigating causality of sequence variants in human disease, Nature, vol.508, pp.469-476, 2014.

C. S. Richards, S. Bale, D. B. Bellissimo, S. Das, W. W. Grody et al., ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions, and Molecular Subcommittee of the ACMG Laboratory Quality Assurance Committee, vol.10, pp.294-300, 2007.

M. J. Bamshad, S. B. Ng, A. W. Bigham, H. K. Tabor, M. J. Emond et al., Exome sequencing as a tool for Mendelian disease gene discovery, Nat. Rev. Genet, vol.12, pp.745-755, 2011.

H. Lee, J. L. Deignan, N. Dorrani, S. P. Strom, S. Kantarci et al., Clinical exome sequencing for genetic identification of rare Mendelian disorders, JAMA, vol.312, pp.1880-1887, 2014.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., Analysis of protein-coding genetic variation in 60,706 humans, Nature, vol.536, pp.285-291, 2016.

K. Retterer, J. Juusola, M. T. Cho, P. Vitazka, F. Millan et al., Clinical application of whole-exome sequencing across clinical indications, Genet. Med, vol.18, pp.696-704, 2016.

T. M. Kitzler, R. Schneider, S. Kohl, C. M. Kolvenbach, D. M. Connaughton et al., COL4A1 mutations as a potential novel cause of autosomal dominant CAKUT in humans, Hum. Genet, vol.138, pp.1105-1115, 2019.

P. Deriziotis, S. A. Graham, S. B. Estruch, and S. E. Fisher, Investigating protein-protein interactions in live cells using bioluminescence resonance energy transfer, J. Vis. Exp, 2014.

K. M. Neilson, F. Pignoni, B. Yan, and S. A. Moody, Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors, Dev. Dyn, vol.239, pp.3446-3466, 2010.

F. Del-viso, D. Bhattacharya, Y. Kong, M. J. Gilchrist, and M. K. Khokha, Exon capture and bulk segregant analysis: rapid discovery of causative mutations using highthroughput sequencing, BMC Genomics, vol.13, p.649, 2012.

F. Del-viso and M. Khokha, Generating diploid embryos from Xenopus tropicalis, Methods Mol. Biol, vol.917, pp.33-41, 2012.

, Normal Table of Xenopus laevis (Daudin) (Garland Science), p.418, 1994.

M. K. Khokha, C. Chung, E. L. Bustamante, L. W. Gaw, K. A. Trott et al., Techniques and probes for the study of Xenopus tropicalis development, Dev. Dyn, vol.225, pp.499-510, 2002.

R. K. Miller, S. G. Canny, C. W. Jang, K. Cho, H. Ji et al., Pronephric tubulogenesis requires Daam1-mediated planar cell polarity signaling, J. Am. Soc. Nephrol, vol.22, pp.1654-1664, 2011.

D. Raciti, L. Reggiani, L. Geffers, Q. Jiang, F. Bacchion et al., Organization of the pronephric kidney revealed by large-scale gene expression mapping, 2008.

, Genome Biol, vol.9, p.84

S. K. Boualia, Y. Gaitan, I. Murawski, R. Nadon, I. R. Gupta et al., Vesicoureteral reflux and other urinary tract malformations in mice compound heterozygous for Pax2 and Emx2, PLoS ONE, vol.6, 2011.

M. Narlis, D. Grote, Y. Gaitan, S. K. Boualia, and M. Bouchard, Pax2 and pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney, J. Am. Soc. Nephrol, vol.18, pp.1121-1129, 2007.

E. Coyaud, M. Mis, E. M. Laurent, W. H. Dunham, A. L. Couzens et al., BioID-based Identification of Skp Cullin F-box (SCF) b-TrCP1/2 E3 Ligase Substrates, Mol. Cell. Proteomics, vol.14, pp.1781-1795, 2015.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, vol.24, pp.2534-2536, 2008.

R. Craig and R. C. Beavis, TANDEM: matching proteins with tandem mass spectra, Bioinformatics, vol.20, pp.1466-1467, 2004.

J. K. Eng, T. A. Jahan, and M. R. Hoopmann, Comet: an open-source MS/MS sequence database search tool, Proteomics, vol.13, pp.22-24, 2013.

G. Teo, G. Liu, J. Zhang, A. I. Nesvizhskii, A. C. Gingras et al., SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software, J. Proteomics, vol.100, pp.37-43, 2014.

E. A. Otto, T. W. Hurd, R. Airik, M. Chaki, W. Zhou et al., Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy, Nat. Genet, vol.42, pp.840-850, 2010.

N. Sobreira, F. Schiettecatte, D. Valle, and A. Hamosh, GeneMatcher: a matching tool for connecting investigators with an interest in the same gene, Hum. Mutat, vol.36, pp.928-930, 2015.

S. Kohl, D. Y. Hwang, G. C. Dworschak, A. C. Hilger, P. Saisawat et al., Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract, J. Am. Soc. Nephrol, vol.25, pp.1917-1922, 2014.

V. Ollendorff, G. Guasch, D. Isnardon, R. Galindo, D. Birnbaum et al., Characterization of FIM-FGFR1, the fusion product of the myeloproliferative disorder-associated t(8;13) translocation, J. Biol. Chem, vol.274, pp.26922-26930, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02697831

M. R. Bekheirnia, N. Bekheirnia, M. N. Bainbridge, S. Gu, Z. H. Coban-akdemir et al., Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene, Genet. Med, vol.19, pp.412-420, 2017.

S. B. Estruch, S. A. Graham, M. Quevedo, A. Vino, D. H. Dekkers et al., Proteomic analysis of FOXP proteins reveals interactions between cortical transcription factors associated with neurodevelopmental disorders, Hum. Mol. Genet, vol.27, pp.1212-1227, 2018.

M. Giurgiu, J. Reinhard, B. Brauner, I. Dunger-kaltenbach, G. Fobo et al., CORUM: the comprehensive resource of mammalian protein complexes-2019, Nucleic Acids Res, vol.47, issue.D1, pp.559-563, 2019.

P. Joshi, T. M. Greco, A. J. Guise, Y. Luo, F. Yu et al., The functional interactome landscape of the human histone deacetylase family, Mol. Syst. Biol, vol.9, p.672, 2013.

F. Yang, X. Huang, R. Zang, J. Chen, M. Fidalgo et al., DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-like State, Cell Stem Cell, vol.26, pp.234-250, 2020.

C. M. Guzzo, A. Ringel, E. Cox, I. Uzoma, H. Zhu et al., Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM)-type zinc fingers in ZNF261 and ZNF198, PLoS ONE, vol.9, 2014.

E. Aguilar-martinez, X. Chen, A. Webber, A. P. Mould, A. Seifert et al., Screen for multi-SUMO-binding proteins reveals a multi-SIM-binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin, Proc. Natl. Acad. Sci. USA, vol.112, pp.4854-4863, 2015.

J. Wang, M. Liu, L. Zhao, Y. Li, M. Zhang et al., Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting, Xenotransplantation, vol.26, p.12484, 2019.

H. Kobayashi, K. Kawakami, M. Asashima, and R. Nishinakamura, Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects, Mech. Dev, vol.124, pp.290-303, 2007.

J. Xu and P. X. Xu, Eya-six are necessary for survival of nephrogenic cord progenitors and inducing nephric duct development before ureteric bud formation, Dev. Dyn, vol.244, pp.866-873, 2015.

R. G. Ruf, P. X. Xu, D. Silvius, E. A. Otto, F. Beekmann et al., SIX1 mutations cause branchio-otorenal syndrome by disruption of EYA1-SIX1-DNA complexes, Proc. Natl. Acad. Sci. USA, vol.101, pp.8090-8095, 2004.

I. H. Still and J. K. Cowell, The t(8;13) atypical myeloproliferative disorder: further analysis of the ZNF198 gene and lack of evidence for multiple genes disrupted on chromosome 13, Blood, vol.92, pp.1456-1458, 1998.

H. Baumann, P. Kunapuli, E. Tracy, and J. K. Cowell, The oncogenic fusion protein-tyrosine kinase ZNF198/fibroblast growth factor receptor-1 has signaling function comparable with interleukin-6 cytokine receptors, J. Biol. Chem, vol.278, pp.16198-16208, 2003.