R. C. Hennekam and . Hutchinson, Gilford progeria syndrome: review of the phenotype, Am. J. Med. Genet. A, vol.140, pp.2603-2624, 2006.

M. Eriksson, Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome, Nature, vol.423, pp.293-298, 2003.

R. Varga, Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome, Proc. Natl Acad. Sci. USA, vol.103, pp.3250-3255, 2006.

M. R. Hamczyk, Vascular smooth muscle-specific progerin expression accelerates atherosclerosis and death in a mouse model of Hutchinson-Gilford progeria syndrome, Circulation, vol.138, pp.266-282, 2018.

M. Olive, Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging, Arterioscler Thromb. Vasc. Biol, vol.30, pp.2301-2309, 2010.

Y. Liu, I. Drozdov, R. Shroff, L. E. Beltran, and C. M. Shanahan, Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells, Circ. Res, vol.112, pp.99-109, 2013.

H. Zhang, Z. M. Xiong, and K. Cao, Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1, Proc. Natl Acad. Sci. USA, vol.111, pp.2261-2270, 2014.

P. H. Kim, Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome, Sci. Transl. Med, vol.10, pp.1-12, 2018.

G. H. Liu, Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome, Nature, vol.472, pp.221-225, 2011.

X. Nissan, Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA, Cell Rep, vol.2, pp.1-9, 2012.

Z. Chen, Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape, Aging Cell, vol.16, pp.870-887, 2017.

M. G. Frid, B. V. Shekhonin, V. E. Koteliansky, and M. A. Glukhova, Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin, Dev. Biol, vol.153, pp.185-193, 1992.

J. L. Duband, M. Gimona, M. Scatena, S. Sartore, and J. V. Small, Calponin and SM 22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development, Differentiation, vol.55, pp.1-11, 1993.

H. Vazao, R. P. Das-neves, M. Graos, and L. Ferreira, Towards the maturation and characterization of smooth muscle cells derived from human embryonic stem cells, PLoS ONE, vol.6, p.17771, 2011.

P. Scaffidi and T. Misteli, Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing, Nat. Cell Biol, vol.10, pp.452-459, 2008.

B. C. Capell, Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome, Proc. Natl Acad. Sci. USA, vol.102, pp.12879-12884, 2005.

J. I. Toth, Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes, Proc. Natl Acad. Sci. USA, vol.102, pp.12873-12878, 2005.

M. P. Mallampalli, G. Huyer, P. Bendale, M. H. Gelb, and S. Michaelis, Inhibiting farnesylation reverses the nuclear morphology defect in a HeLa cell model for Hutchinson-Gilford progeria syndrome, Proc. Natl Acad. Sci. USA, vol.102, pp.14416-14421, 2005.

J. J. Chiu and S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiol. Rev, vol.91, pp.327-387, 2011.

F. G. Osorio, Splicing-directed therapy in a new mouse model of human accelerated aging, Sci. Transl. Med, vol.3, pp.106-107, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193325

O. Santiago-fernandez, Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome, Nat. Med, vol.25, pp.423-426, 2019.

T. Shimizu, Notch signaling induces osteogenic differentiation and mineralization of vascular smooth muscle cells: role of Msx2 gene induction via Notch-RBP-Jk signaling, Arterioscler. Thromb. Vasc. Biol, vol.29, pp.1104-1111, 2009.

C. Cheng, Large variations in absolute wall shear stress levels within one species and between species, Atherosclerosis, vol.195, pp.225-235, 2007.

J. Suo, Hemodynamic shear stresses in mouse aortas: implications for atherogenesis, Arterioscler Thromb. Vasc. Biol, vol.27, pp.346-351, 2007.

R. Tacutu, Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing, Nucleic Acids Res, vol.41, pp.1027-1033, 2013.

V. Knauper, Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme, J. Biol. Chem, vol.271, pp.17124-17131, 1996.

S. Wojtowicz-praga, Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer, Invest. New Drugs, vol.14, pp.193-202, 1996.

T. Quillard, Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis, Arterioscler. Thromb. Vasc. Biol, vol.31, pp.2464-2472, 2011.

C. K. Engel, Structural basis for the highly selective inhibition of MMP-13, Chem. Biol, vol.12, pp.181-189, 2005.

R. Villa-bellosta, Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment, Circulation, vol.127, pp.2442-2451, 2013.

J. Rivera-torres, Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with nuclear lamina alterations, Proc. Natl Acad. Sci. USA, vol.113, pp.7250-7259, 2016.

K. Buczak, Spatial tissue proteomics quantifies inter-and intratumor heterogeneity in hepatocellular carcinoma (HCC), Mol. Cell Proteom, vol.17, pp.810-825, 2018.

I. Heinze, Species comparison of liver proteomes reveals links to naked mole-rat longevity and human aging, BMC Biol, vol.16, p.82, 2018.

V. M. Macaulay, Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions, Clin. Cancer Res, vol.5, pp.513-520, 1999.

Z. D. Shi, H. Wang, and J. M. Tarbell, Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen, PLoS ONE, vol.6, p.15956, 2011.

K. M. Ainslie, J. S. Garanich, R. O. Dull, and J. M. Tarbell, Vascular smooth muscle cell glycocalyx influences shear stress-mediated contractile response, J. Appl Physiol, vol.98, pp.242-249, 1985.

V. Knauper, The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction, J. Biol. Chem, vol.272, pp.7608-7616, 1997.

K. M. Austin, L. Covic, and A. Kuliopulos, Matrix metalloproteases and PAR1 activation, Blood, vol.121, pp.431-439, 2013.

L. B. Gordon, Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson-Gilford progeria syndrome, Proc. Natl Acad. Sci. USA, vol.109, pp.16666-16671, 2012.

I. Varela, Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging, Nat. Med, vol.14, pp.767-772, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00376425

M. Song, H. San, S. A. Anderson, R. O. Cannon, and D. Iii-&-orlic, Shear stressinduced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria, Stem Cell Res. Ther, vol.5, p.41, 2014.

C. Cheung, A. S. Bernardo, R. A. Pedersen, and S. Sinha, Directed differentiation of embryonic origin-specific vascular smooth muscle subtypes from human pluripotent stem cells, Nat. Protoc, vol.9, pp.929-938, 2014.

L. S. Ferreira, Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo, Circ. Res, vol.101, pp.286-294, 2007.

E. M. Maguire, Q. Xiao, and Q. Xu, Differentiation and application of induced pluripotent stem cell-derived vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol, vol.37, pp.2026-2037, 2017.

J. Zhang, A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects, Cell Stem Cell, vol.8, pp.31-45, 2011.

M. Inada, Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification, Proc. Natl Acad. Sci. USA, vol.101, pp.17192-17197, 2004.

B. C. Capell, A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model, Proc. Natl Acad. Sci. USA, vol.105, pp.15902-15907, 2008.

D. Xiao, Notch signaling regulates MMP-13 expression via Runx2 in chondrocytes, Sci. Rep, vol.9, p.15596, 2019.

J. M. Cathcart and J. Cao, MMP inhibitors: past, present and future, Front Biosci. (Landmark Ed.), vol.20, pp.1164-1178, 2015.

N. Nosoudi, Prevention of abdominal aortic aneurysm progression by targeted inhibition of matrix metalloproteinase activity with batimastat-loaded nanoparticles, Circ. Res, vol.117, pp.80-89, 2015.

S. L. Parsons, S. A. Watson, and R. J. Steele, Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites, Eur. J. Surg. Oncol, vol.23, pp.526-531, 1997.

P. R. Pitrez, Differentiation of human induced-pluripotent stem cells into smooth muscle cells, Protoc. Exch, 2020.

R. Bruderer, Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues, Mol. Cell Proteom, vol.14, pp.1400-1410, 2015.

J. A. Vizcaino, update of the PRIDE database and its related tools, Nucleic Acids Res, vol.44, p.11033, 2016.

, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder