C. A. Klebanoff, N. Acquavella, Z. Yu, and N. P. Restifo, Therapeutic cancer vaccines: are we there yet?, Immunol Rev, vol.239, pp.27-44, 2011.

D. S. Chen and I. Mellman, Oncology meets immunology: the cancerimmunity cycle, Immunity, vol.39, pp.1-10, 2013.

K. Palucka and J. Banchereau, Dendritic-cell-based therapeutic cancer vaccines, Immunity, vol.39, pp.38-48, 2013.

L. Qiu, M. Valente, Y. Dolen, E. Jäger, M. T. Beest et al., Endolysosomalescape nanovaccines through adjuvant-induced tumor antigen assembly for enhanced effector CD8(+) T cell activation, Small, vol.14, p.1703539, 2018.

A. Amador-molina, C. Trejo-moreno, D. Romero-rodríguez, I. Sada-ovalle, E. Pérez-cárdenas et al., Vaccination with human papillomavirus-18 E1 protein plus ?-galactosyl-ceramide induces CD8(+) cytotoxic response and impairs the growth of E1-expressing tumors, Vaccine, vol.37, pp.1219-1247, 2019.

T. J. Moyer, A. C. Zmolek, and D. J. Irvine, Beyond antigens and adjuvants: formulating future vaccines, J Clin Invest, vol.126, pp.799-808, 2016.

S. Bobbala and S. Hook, Is there an optimal formulation and delivery strategy for subunit vaccines?, Pharm Res, vol.33, pp.2078-97, 2016.

R. R. Shah, K. J. Hassett, and L. A. Brito, Overview of vaccine adjuvants: introduction, history, and current status, Methods Mol Biol, vol.1494, pp.1-13, 2017.

D. T. O'hagan and C. B. Fox, New generation adjuvants-from empiricism to rational design, Vaccine, pp.14-20, 2015.

A. L. Silva, P. C. Soema, B. Slutter, F. Ossendorp, and W. Jiskoot, PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity, Hum Vaccin Immunother, vol.12, pp.1056-69, 2016.

J. Koerner, D. Horvath, and M. Groettrup, Harnessing dendritic CElls for poly (D,L-lactide-co-glycolide) microspheres (PLGA MS)-mediated antitumor therapy, Front Immunol, vol.10, p.707, 2019.

R. Ghinnagow, D. Meester, J. Cruz, L. J. Aspord, C. Corgnac et al., Co-delivery of the NKT agonist alpha-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses, Oncoimmunology, vol.6, p.1339855, 2017.

D. Sancho, D. Mourão-sá, O. P. Joffre, O. Schulz, N. C. Rogers et al., Tumor therapy in mice via antigen targeting to a novel, DCrestricted C-type lectin, J Clin Invest, vol.118, pp.2098-110, 2008.

L. E. Paulis, S. Mandal, M. Kreutz, and C. G. Figdor, Dendritic cell-based nanovaccines for cancer immunotherapy, Curr Opin Immunol, vol.25, pp.389-95, 2013.

E. Macho-fernandez, L. J. Cruz, R. Ghinnagow, J. Fontaine, E. Bialecki et al., Targeted delivery of alpha-galactosylceramide to CD8alpha+ dendritic cells optimizes type I NKT cell-based antitumor responses, J Immunol, vol.193, pp.961-970, 2014.

G. Picco, R. Beatson, J. Taylor-papadimitriou, and J. M. Burchell, Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas, Eur J Immunol, vol.44, pp.1947-55, 2014.

M. V. Dhodapkar, M. Sznol, B. Zhao, D. Wang, R. D. Carvajal et al., Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205, Sci Transl Med, vol.6, pp.232-251, 2014.

J. M. Silva, M. Videira, R. Gaspar, V. Preat, and H. F. Florindo, Immune system targeting by biodegradable nanoparticles for cancer vaccines, J Control Release, vol.168, pp.179-99, 2013.

B. Temizoz, E. Kuroda, K. J. Ishii, G. Gonzalez-aseguinolaza, L. Van-kaer et al., Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines, Int Immunol, vol.28, pp.617-641, 2002.

I. F. Hermans, J. D. Silk, U. Gileadi, M. Salio, B. Mathew et al., NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells, J Immunol, vol.171, pp.5140-5147, 2003.

S. Fujii, K. Shimizu, C. Smith, L. Bonifaz, and R. M. Steinman, Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein, J Exp Med, vol.198, pp.267-79, 2003.

D. Stober, I. Jomantaite, R. Schirmbeck, and J. Reimann, NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo, J Immunol, vol.170, pp.2540-2548, 2003.

J. G. Coelho-dos-reis, J. Huang, T. Tsao, F. V. Pereira, R. Funakoshi et al., Co-administration of ?-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells, Clin Immunol, vol.168, pp.6-15, 2016.

Y. Dölen, M. Kreutz, U. Gileadi, J. Tel, A. Vasaturo et al., Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses, Oncoimmunology, vol.5, p.1068493, 2015.

K. M. Tullett, M. H. Lahoud, and K. J. Radford, Harnessing human cross-presenting CLEC9A(+)XCR1(+) dendritic cells for immunotherapy, Front Immunol, vol.5, p.239, 2014.

X. Li, J. Huang, I. Kaneko, M. Zhang, S. Iwanaga et al., A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice, Expert Rev Vaccines, vol.16, pp.73-80, 2017.

J. Huang, X. Li, J. G. Coelho-dos-reis, J. M. Wilson, and M. Tsuji, An AAV vectormediated gene delivery approach facilitates reconstitution of functional human CD8+ T cells in mice, PLoS One, vol.9, p.88205, 2014.

J. Coelho-dos-reis, R. Funakoshi, J. Huang, F. V. Pereira, S. Iketani et al., Functional human CD141+ dendritic cells in human immune system mice, J Infect Dis, vol.221, pp.201-214, 2020.

J. Zhou, A. Kaiser, C. Ng, R. Karcher, T. Mcconnell et al., CD8+ T-cell mediated anti-malaria protection induced by malaria vaccines; assessment of hepatic CD8+ T cells by SCBC assay, Hum Vaccin Immunother, vol.13, pp.1625-1634, 2017.

Q. Xue, E. Bettini, P. Paczkowski, C. Ng, A. Kaiser et al., Singlecell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response, J Immunother Cancer, vol.5, p.85, 2017.

J. Rossi, P. Paczkowski, Y. W. Shen, K. Morse, B. Flynn et al., Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL, Blood, vol.132, pp.804-818, 2018.

G. Parisi, J. D. Saco, F. B. Salazar, J. Tsoi, P. Krystofinski et al., Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist, Nat Commun, vol.11, p.660, 2020.

C. Ma, A. F. Cheung, T. Chodon, R. C. Koya, Z. Wu et al., Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy, Cancer Discov, vol.3, pp.418-447, 2013.

D. Kobak and P. Berens, The art of using t-SNE for single-cell transcriptomics, Nat Commun, vol.10, p.5416, 2019.

V. Semmling, V. Lukacs-kornek, C. A. Thaiss, T. Quast, K. Hochheiser et al., Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs, Nat Immunol, vol.11, pp.313-333, 2010.

N. Van-panhuys, Studying dendritic Cell-T cell interactions under in vivo conditions, Methods Mol Biol, vol.1584, pp.569-83, 2017.

L. Wang, Y. Xie, K. A. Ahmed, S. Ahmed, A. Sami et al., Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice, Breast Cancer Res Treat, vol.140, pp.273-84, 2013.

L. Ottobrini, C. Martelli, D. L. Trabattoni, M. Clerici, and G. Lucignani, In vivo imaging of immune cell trafficking in cancer, Eur J Nucl Med Mol Imaging, vol.38, pp.949-68, 2011.

R. M. Prins, C. J. Shu, C. G. Radu, D. D. Vo, H. Khan-farooqi et al., Antitumor activity and trafficking of self, tumor-specific T cells against tumors located in the brain, Cancer Immunol Immunother, vol.57, pp.1279-89, 2008.