C. B. Green, J. S. Takahashi, and J. Bass, The meter of metabolism, Cell, vol.134, pp.728-742, 2008.

C. Scheiermann, Y. Kunisaki, and P. S. Frenette, Circadian control of the immune system, Nat. Rev. Immunol, vol.13, pp.190-198, 2013.

D. K. Welsh, J. S. Takahashi, and S. A. Kay, Suprachiasmatic nucleus: cell autonomy and network properties, Annu. Rev. Physiol, vol.72, pp.551-577, 2010.

U. Albrecht, Timing to perfection: the biology of central and peripheral circadian clocks, Neuron, vol.74, pp.246-260, 2012.

K. A. Dyar, Atlas of circadian metabolism reveals system-wide coordination and communication between clocks, Cell, vol.174, p.1511, 2018.

J. Bass and M. A. Lazar, Circadian time signatures of fitness and disease, Science, vol.354, pp.994-999, 2016.

G. Asher and P. Sassone-corsi, Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock, Cell, vol.161, pp.84-92, 2015.

S. Panda, Circadian physiology of metabolism, Science, vol.354, pp.1008-1015, 2016.

C. L. Partch, C. B. Green, and J. S. Takahashi, Molecular architecture of the mammalian circadian clock, Trends Cell Biol, vol.24, pp.90-99, 2014.

C. M. Gallardo, Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice, Elife, vol.3, p.3781, 2014.

M. Iijima, T. Nikaido, M. Akiyama, T. Moriya, and S. Shibata, Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse, Eur. J. Neurosci, vol.16, pp.921-929, 2002.

J. A. Mohawk, C. B. Green, and J. S. Takahashi, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci, vol.35, pp.445-462, 2012.

B. P. Hasler, L. J. Smith, J. C. Cousins, and R. R. Bootzin, Circadian rhythms, sleep, and substance abuse, Sleep. Med. Rev, vol.16, pp.67-81, 2012.

R. W. Logan, W. P. Williams, and C. A. Mcclung, Circadian rhythms and addiction: mechanistic insights and future directions, Behav. Neurosci, vol.128, pp.387-412, 2014.

E. R. Korpi, Mechanisms of action and persistent neuroplasticity by drugs of abuse, Pharm. Rev, vol.67, pp.872-1004, 2015.

G. Di-chiara and V. Bassareo, Reward system and addiction: what dopamine does and doesn't do, Curr. Opin. Pharm, vol.7, pp.69-76, 2007.

J. A. Girault, Integrating neurotransmission in striatal medium spiny neurons, Adv. Exp. Med. Biol, vol.970, pp.407-429, 2012.

C. A. Mcclung, Regulation of dopaminergic transmission and cocaine reward by the Clock gene, Proc. Natl. Acad. Sci. USA, vol.102, pp.9377-9381, 2005.

R. W. Logan, NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward, Mol. Psychiatry, vol.24, pp.1668-1684, 2019.

T. R. Castaneda, B. M. De-prado, D. Prieto, and F. Mora, Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light, J. Pineal Res, vol.36, pp.177-185, 2004.

M. J. Ferris, Dopamine transporters govern diurnal variation in extracellular dopamine tone, Proc. Natl Acad. Sci. USA, vol.111, pp.2751-2759, 2014.

M. Imbesi, Dopamine receptor-mediated regulation of neuronal clock gene expression, Neuroscience, vol.158, pp.537-544, 2009.

S. Hood, Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors, J. Neurosci, vol.30, pp.14046-14058, 2010.

S. A. Brown, Circadian metabolism: from mechanisms to metabolomics and medicine, Trends Endocrinol. Metab, vol.27, pp.415-426, 2016.

A. Ribas-latre and K. Eckel-mahan, Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health, Mol. Metab, vol.5, pp.133-152, 2016.

E. Challet, The circadian regulation of food intake, Nat. Rev. Endocrinol, vol.15, pp.393-405, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02348786

G. Kharkwal, D. Radl, R. Lewis, and E. Borrelli, Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine, Proc. Natl Acad. Sci. USA, vol.113, pp.11609-11614, 2016.

D. Radl, Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms, Proc. Natl Acad. Sci. USA, vol.115, pp.198-203, 2018.

A. Anzalone, Dual control of dopamine synthesis and release by presynaptic and postsynaptic dopamine D2 receptors, J. Neurosci, vol.32, pp.9023-9034, 2012.

S. A. Kliewer, Differential expression and activation of a family of murine peroxisome proliferator-activated receptors, Proc. Natl Acad. Sci. USA, vol.91, pp.7355-7359, 1994.

M. A. Khan, Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of alzheimer's disease: an update, Curr. Neuropharmacol, vol.17, pp.232-246, 2019.

C. H. Lee, P. Olson, and R. M. Evans, Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors, Endocrinology, vol.144, pp.2201-2207, 2003.

L. K. Dobbs, Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine, Neuron, vol.90, pp.1100-1113, 2016.

T. Beuming, The binding sites for cocaine and dopamine in the dopamine transporter overlap, Nat. Neurosci, vol.11, pp.780-789, 2008.

E. J. Nestler, The neurobiology of cocaine addiction, Sci. Pr. Perspect, vol.3, pp.4-10, 2005.

C. Luscher and R. C. Malenka, Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling, Neuron, vol.69, pp.650-663, 2011.

M. E. Hughes, J. B. Hogenesch, and K. Kornacker, JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets, J. Biol. Rhythms, vol.25, pp.372-380, 2010.

D. Vallone, R. Picetti, and E. Borrelli, Structure and function of dopamine receptors, Neurosci. Biobehav. Rev, vol.24, pp.125-132, 2000.

K. Daily, V. R. Patel, P. Rigor, X. Xie, and P. Baldi, MotifMap: integrative genome-wide maps of regulatory motif sites for model species, BMC Bioinformatics, vol.12, p.495, 2011.

D. J. Mangelsdorf, The nuclear receptor superfamily: the second decade, Cell, vol.83, pp.835-839, 1995.

J. H. Baik, Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors, Nature, vol.377, pp.424-428, 1995.

R. Y. Kanterman, Transfected D2 dopamine receptors mediate the potentiation of arachidonic acid release in Chinese hamster ovary cells, Mol. Pharm, vol.39, pp.364-369, 1991.

K. A. Neve, J. K. Seamans, and H. Trantham-davidson, Dopamine receptor signaling, J. Recept. Signal Transduct. Res, vol.24, pp.165-205, 2004.

F. A. Kuehl and R. W. Egan, Prostaglandins, arachidonic acid, and inflammation, Science, vol.210, pp.978-984, 1980.

D. Piomelli, Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism, Nature, vol.353, pp.164-167, 1991.

O. Nosjean and J. A. Boutin, Natural ligands of PPARgamma: are prostaglandin J(2) derivatives really playing the part?, Cell Signal, vol.14, pp.573-583, 2002.

S. Schinelli, M. Paolillo, and G. L. Corona, Opposing actions of D1-and D2-dopamine receptors on arachidonic acid release and cyclic AMP production in striatal neurons, J. Neurochem, vol.62, pp.944-949, 1994.

J. U. Scher and M. H. Pillinger, 15d-PGJ2: the anti-inflammatory prostaglandin?, Clin. Immunol, vol.114, pp.100-109, 2005.

B. M. Forman, 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma, Cell, vol.83, pp.803-812, 1995.

T. Samikkannu, Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid, PLoS ONE, vol.9, p.106348, 2014.

C. R. Swanson, The PPAR-gamma agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys, J. Neuroinflammation, vol.8, p.91, 2011.

Y. Kiyota, Studies on the metabolism of the new antidiabetic agent pioglitazone. Identification of metabolites in rats and dogs, Arzneimittelforschung, vol.47, pp.22-28, 1997.

C. Luscher and C. Bellone, Cocaine-evoked synaptic plasticity: a key to addiction?, Nat. Neurosci, vol.11, pp.737-738, 2008.

A. R. Ozburn, NPAS2 Regulation of Anxiety-Like Behavior and GABAA Receptors, Front. Mol. Neurosci, vol.10, p.360, 2017.

A. J. Brager, A. C. Stowie, R. A. Prosser, and J. D. Glass, The mPer2 clock gene modulates cocaine actions in the mouse circadian system, Behav. Brain Res, vol.243, pp.255-260, 2013.

C. Abarca, U. Albrecht, and R. Spanagel, Cocaine sensitization and reward are under the influence of circadian genes and rhythm, Proc. Natl Acad. Sci. USA, vol.99, pp.9026-9030, 2002.

M. Welter, Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine, Proc. Natl Acad. Sci. USA, vol.104, pp.6840-6845, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00166247

S. B. Caine, Role of dopamine D2-like receptors in cocaine selfadministration: studies with D2 receptor mutant mice and novel D2 receptor antagonists, J. Neurosci, vol.22, pp.2977-2988, 2002.

N. D. Volkow, Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex, Am. J. Psychiatry, vol.158, pp.2015-2021, 2001.

M. A. Nader, PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys, Nat. Neurosci, vol.9, pp.1050-1056, 2006.

P. W. Czoty, H. D. Gage, and M. A. Nader, Differences in D2 dopamine receptor availability and reaction to novelty in socially housed male monkeys during abstinence from cocaine, Psychopharmacology, vol.208, pp.585-592, 2010.

R. G. Lewis, Dopaminergic control of striatal cholinergic interneurons underlies cocaine-induced psychostimulation, Cell Rep, vol.31, p.107527, 2020.

K. S. Korshunov, L. J. Blakemore, and P. Q. Trombley, Dopamine: a modulator of circadian rhythms in the central nervous system, Front. Cell Neurosci, vol.11, p.91, 2017.

R. K. Chaturvedi and M. F. Beal, PPAR: a therapeutic target in Parkinson's disease, J. Neurochem, vol.106, pp.506-518, 2008.

Q. Jiang, M. Heneka, and G. E. Landreth, The role of peroxisome proliferatoractivated receptor-gamma (PPARgamma) in Alzheimer's disease: therapeutic implications, CNS Drugs, vol.22, pp.1-14, 2008.

W. R. Miller, PPARgamma agonism attenuates cocaine cue reactivity, Addict. Biol, vol.23, pp.55-68, 2018.

J. Zhang, c-Fos facilitates the acquisition and extinction of cocaineinduced persistent changes, J. Neurosci, vol.26, pp.13287-13296, 2006.

M. B. Kelz, Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine, Nature, vol.401, pp.272-276, 1999.

H. S. Bateup, Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs, Nat. Neurosci, vol.11, pp.932-939, 2008.

T. Hikida, K. Kimura, N. Wada, K. Funabiki, and S. Nakanishi, Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior, Neuron, vol.66, pp.896-907, 2010.

P. K. Parekh, Cell-type-specific regulation of nucleus accumbens synaptic plasticity and cocaine reward sensitivity by the circadian protein, NPAS2, J. Neurosci, vol.39, pp.4657-4667, 2019.

H. M. Cates, C. K. Lardner, R. C. Bagot, R. L. Neve, and E. J. Nestler, Fosb induction in nucleus accumbens by cocaine is regulated by E2F3a, vol.6, 2019.

L. M. Yager, A. F. Garcia, A. M. Wunsch, and S. M. Ferguson, The ins and outs of the striatum: role in drug addiction, Neuroscience, vol.301, pp.529-541, 2015.

B. J. Everitt and T. W. Robbins, From the ventral to the dorsal striatum: devolving views of their roles in drug addiction, Neurosci. Biobehav. Rev, vol.37, pp.1946-1954, 2013.

M. K. Lobo and E. J. Nestler, The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons, Front. Neuroanat, vol.5, p.41, 2011.

D. M. Walker, Cocaine self-administration alters transcriptome-wide responses in the brain's reward circuitry, Biol. Psychiatry, vol.84, pp.867-880, 2018.

R. Chandra and M. K. Lobo, Beyond neuronal activity markers: select immediate early genes in striatal neuron subtypes functionally mediate psychostimulant addiction, Front. Behav. Neurosci, vol.11, p.112, 2017.

O. Aizman, Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons, Nat. Neurosci, vol.3, pp.226-230, 2000.

C. Trapnell, Differential analysis of gene regulation at transcript resolution with RNA-seq, Nat. Biotechnol, vol.31, pp.46-53, 2013.

V. R. Patel, K. Eckel-mahan, P. Sassone-corsi, and P. Baldi, CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics, Nat. Methods, vol.9, pp.772-773, 2012.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, vol.4, pp.44-57, 2009.

K. Sidiropoulos, Reactome enhanced pathway visualization, Bioinformatics, vol.33, pp.3461-3467, 2017.

A. Fabregat, Reactome pathway analysis: a high-performance in-memory approach, BMC Bioinformatics, vol.18, p.142, 2017.

R. E. Soccio, Genetic variation determines PPARgamma function and anti-diabetic drug response in vivo, Cell, vol.162, pp.33-44, 2015.

K. Brami-cherrier, Parsing molecular and behavioral effects of cocaine in mitogen-and stress-activated protein kinase-1-deficient mice, J. Neurosci, vol.25, pp.11444-11454, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00084993

M. Murakami, Gut microbiota directs PPARgamma-driven reprogramming of the liver circadian clock by nutritional challenge, EMBO Rep, vol.17, pp.1292-1303, 2016.