D. Francesco, A. Di-germanio, C. Bernier, M. De-cabo, and R. , A time to fast, Science, vol.362, pp.770-775, 2018.

S. Panda, The arrival of circadian medicine, Nat. Rev. Endocrinol, vol.15, pp.67-69, 2019.

S. Brandhorst, A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan, Cell Metab, vol.22, pp.86-99, 2015.

M. Hatori, Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet, Cell Metab, vol.15, pp.848-860, 2012.

M. K. Olsen, M. H. Choi, B. Kulseng, C. M. Zhao, and D. Chen, Timerestricted feeding on weekdays restricts weight gain: A study using rat models of high-fat diet-induced obesity, Physiol. Behav, vol.173, pp.298-304, 2017.

H. Sherman, Timed high-fat diet resets circadian metabolism and prevents obesity, FASEB J, vol.26, pp.3493-3502, 2012.

L. N. Woodie, Restricted feeding for 9 h in the active period partially abrogates the detrimental metabolic effects of a western diet with liquid sugar consumption in mice, Metabolism, vol.82, pp.1-13, 2018.

E. F. Sutton, Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes, Cell Metab, vol.27, p.1213, 2018.

A. Chaix, A. Zarrinpar, P. Miu, and S. Panda, Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges, Cell Metab, vol.20, pp.991-1005, 2014.

A. Chaix, T. Lin, H. D. Le, M. W. Chang, and S. Panda, Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock, Cell Metab, vol.29, pp.303-319, 2019.

K. Gabel, Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study, Nutr. Healthy Aging, vol.4, pp.345-353, 2018.

S. Gill and S. Panda, A smartphone App reveals erratic diurnal eating patterns in humans that can be modulated for health benefits, Cell Metab, vol.22, pp.789-798, 2015.

R. Dallmann, A. U. Viola, L. Tarokh, C. Cajochen, and S. A. Brown, The human circadian metabolome, P Natl Acad. Sci. USA, vol.109, pp.2625-2629, 2012.

S. Sato, E. B. Parr, B. L. Devlin, J. A. Hawley, and P. Sassone-corsi, Human metabolomics reveal daily variations under nutritional challenges specific to serum and skeletal muscle, Mol. Metab, vol.16, pp.1-11, 2018.

E. B. Parr, B. L. Devlin, B. E. Radford, and J. A. Hawley, A delayed morning and earlier evening time-restricted feeding protocol for improving glycemic control and dietary adherence in men with overweight/obesity: a randomized controlled trial, Nutrients, vol.12, p.505, 2020.

K. L. Eckel-mahan, Reprogramming of the circadian clock by nutritional challenge, Cell, vol.155, pp.1464-1478, 2013.

A. Kohsaka, High-fat diet disrupts behavioral and molecular circadian rhythms in mice, Cell Metab, vol.6, pp.414-421, 2007.

K. A. Stokkan, S. Yamazaki, H. Tei, Y. Sakaki, and M. Menaker, Entrainment of the circadian clock in the liver by feeding, Science, vol.291, pp.490-493, 2001.

P. Tognini, Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet, Cell Metab, vol.26, p.525, 2017.

C. Vollmers, Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression, Proc. Natl Acad. Sci. USA, vol.106, pp.21453-21458, 2009.

G. Asher and P. Sassone-corsi, Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock, Cell, vol.161, pp.84-92, 2015.

J. S. O'neill and A. B. Reddy, Circadian clocks in human red blood cells, Nature, vol.469, pp.498-503, 2011.

D. Jakubowicz, Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: a randomized clinical trial, Diabetes Care, vol.40, pp.1573-1579, 2017.

H. Jamshed, Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans, Nutrients, vol.11, p.1234, 2019.

K. A. Dyar, Atlas of circadian metabolism reveals system-wide coordination and communication between clocks, Cell, vol.174, p.1511, 2018.

L. Perrin, Transcriptomic analyses reveal rhythmic and clock-driven pathways in human skeletal muscle, Elife, vol.7, p.34114, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847497

S. W. Chang, T. Yoshihara, S. Machida, and H. Naito, Circadian rhythm of intracellular protein synthesis signaling in rat cardiac and skeletal muscles, Biochem. Biophys. Rep, vol.9, pp.153-158, 2017.

T. Dickmeis, Glucocorticoids and the circadian clock, J. Endocrinol, vol.200, pp.3-22, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00639781

B. J. Greenwell, Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice, Cell Rep, vol.27, p.645, 2019.

M. Izumo, Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain bmal1 mutant, Elife, vol.3, p.4617, 2014.

D. Van-moorsel, Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity, Mol. Metab, vol.5, pp.635-645, 2016.

J. Wefers, Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle, Proc. Natl Acad. Sci. USA, vol.115, pp.7789-7794, 2018.

C. M. Isherwood, D. R. Van-der-veen, J. D. Johnston, and D. J. Skene, Twentyfour-hour rhythmicity of circulating metabolites: effect of body mass and type 2 diabetes, FASEB J, vol.31, pp.5557-5567, 2017.

S. K. Davies, Effect of sleep deprivation on the human metabolome, Proc. Natl Acad. Sci. USA, vol.111, pp.10761-10766, 2014.

M. Franklin, Androgenic regulation of sexually dimorphic expression of RNA binding motif protein 48 in the developing mouse cortex and hippocampus, Int. J. Dev. Neurosci, vol.78, pp.33-44, 2019.

R. Wang, D. Zheng, L. Wei, Q. Ding, and B. Tian, Regulation of intronic polyadenylation by PCF11 impacts mrna expression of long genes, Cell Rep, vol.26, pp.2766-2778, 2019.

A. Yanagiya, Translational homeostasis via the mrna cap-binding protein, eIF4E, Mol. Cell, vol.46, pp.847-858, 2012.

C. Cantu, Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of wnt/beta-catenin signaling, Genes Dev, vol.32, pp.1443-1458, 2018.

M. K. Logan, M. F. Burke, and M. D. Hebert, Altered dynamics of scaRNA2 and scaRNA9 in response to stress correlates with disrupted nuclear organization, Biol Open, vol.7, p.37101, 2018.

A. Srivastava, A. S. Kumar, and R. K. Mishra, Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation, Cell Mol. Life Sci, vol.75, pp.623-633, 2018.

H. K. Song, Pik3ip1 modulates cardiac hypertrophy by inhibiting PI3K pathway, PLoS One, vol.10, p.122251, 2015.

M. Karimpour, Postprandial metabolomics: a pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal, Anal. Chim. Acta, vol.908, pp.121-131, 2016.

S. Krug, The dynamic range of the human metabolome revealed by challenges, FASEB J, vol.26, pp.2607-2619, 2012.

L. Pellis, Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status, Metabolomics, vol.8, pp.347-359, 2012.

L. Shi, Targeted metabolomics reveals differences in the extended postprandial plasma metabolome of healthy subjects after intake of wholegrain rye porridges versus refined wheat bread, Mol. Nutr. Food Res, vol.61, 2017.

A. Shrestha, E. Mullner, K. Poutanen, H. Mykkanen, and A. A. Moazzami, Metabolic changes in serum metabolome in response to a meal, Eur. J. Nutr, vol.56, pp.671-681, 2017.

A. M. Evans, C. D. Dehaven, T. Barrett, M. Mitchell, and E. Milgram, Integrated, nontargeted ultrahigh performance liquid chromatography/ electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems, Anal. Chem, vol.81, pp.6656-6667, 2009.

C. D. Dehaven, A. M. Evans, H. Dai, and K. A. Lawton, Organization of GC/ MS and LC/MS metabolomics data into chemical libraries, J. Cheminformatics, vol.2, p.9, 2010.

A. Dobin, Star: ultrafast universal RNA-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

Y. Liao, G. K. Smyth, and W. Shi, Featurecounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, pp.923-930, 2014.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, Edger: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

P. F. Thaben and P. O. Westermark, Detecting rhythms in time series with rain, J. Biol. Rhythm, vol.29, pp.391-400, 2014.

R. Parsons, R. Parsons, N. Garner, H. Oster, and O. Rawashdeh, Circacompare: a method to estimate and statistically support differences in mesor, amplitude and phase, between circadian rhythms, Bioinformatics, vol.36, pp.1208-1212, 2020.

G. Yu, L. G. Wang, Y. Han, and Q. Y. He, Clusterprofiler: an R package for comparing biological themes among gene clusters, Omics, vol.16, pp.284-287, 2012.

J. A. , L. S. , L. R. , and A. A. , We gratefully acknowledge the technical assistance from Dr. Andrew Garnham, as well as Ms. Bridget Radford, Mr. Marcus Callahan, Mr. Samuel Pinto and MS Marylee Warburton (ACU) for assistance completing the data collection. Most importantly, we thank the participants for their time and commitment to completing the difficult study protocols. As this manuscript was under final editorial processing, we were shocked and saddened to learn of the sudden and unexpected passing of our friend, colleague and collaborator, Professor Paolo Sassone-Corsi. We feel privileged to have had the opportunity to work with Paolo, and witness first-hand a brilliant mind, a passion for the pursuit of scientific excellence, and generous mentorship

E. B. Conceptualization, B. L. , J. A. , B. L. Methodology, E. B. et al., Data analysis and figure preparation