J. Blanca, Genomic variation in tomato, from wild ancestors to contemporary breeding accessions, BMC Genomics, vol.16, p.257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02638064

T. Lin, Genomic analyses provide insights into the history of tomato breeding, Nat. Genet, vol.46, pp.1220-1226, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639866

L. Gao, The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor, Nat. Genet, vol.51, pp.1044-1051, 2019.

X. Huang and B. Han, Natural variations and genome-wide association studies in crop plants, Annu. Rev. Plant Biol, vol.65, pp.531-551, 2014.

S. R. Eathington, T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull, Molecular markers in a commercial breeding program, Crop Sci, vol.47, p.154, 2007.

R. S. Meyer and M. D. Purugganan, Evolution of crop species: genetics of domestication and diversification, Nat. Rev. Genet, vol.14, pp.840-852, 2013.

J. Song, Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus, Nat. Plants, vol.6, pp.34-45, 2020.

R. R. Fuentes, Structural variants in 3000 rice genomes, Genome Res, vol.29, pp.870-880, 2019.

R. Akakpo, M. Carpentier, Y. Ie-hsing, and O. Panaud, The impact of transposable elements on the structure, evolution and function of the rice genome, N. Phytol, vol.226, pp.44-49, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02434127

Y. Zhou, The population genetics of structural variants in grapevine domestication, Nat. Plants, vol.5, pp.965-979, 2019.

N. Yang, Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement, Nat. Genet, vol.51, pp.1052-1059, 2019.

R. K. Varshney, S. N. Nayak, G. D. May, and S. A. Jackson, Next-generation sequencing technologies and their implications for crop genetics and breeding, Trends Biotechnol, vol.27, pp.522-530, 2009.

T. A. Manolio, Finding the missing heritability of complex diseases, Nature, vol.461, pp.747-753, 2009.

P. H. Sudmant, An integrated map of structural variation in 2,504 human genomes, Nature, vol.526, pp.75-81, 2015.

D. Lisch, How important are transposons for plant evolution?, Nat. Rev. Genet, vol.14, pp.49-61, 2013.

T. Sultana, A. Zamborlini, G. Cristofari, and P. Lesage, Integration site selection by retroviruses and transposable elements in eukaryotes, Nat. Rev. Genet, vol.18, pp.292-308, 2017.

E. B. Chuong, N. C. Elde, and C. Feschotte, Regulatory activities of transposable elements: from conflicts to benefits, Nat. Rev. Genet, vol.18, pp.71-86, 2017.

A. Studer, Q. Zhao, J. Ross-ibarra, and J. Doebley, Identification of a functional transposon insertion in the maize domestication gene tb1, Nat. Genet, vol.43, pp.1160-1163, 2011.

M. K. Bhattacharyya, A. M. Smith, T. H. Ellis, C. Hedley, and C. Martin, The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme, Cell, vol.60, pp.115-122, 1990.

M. Kawase, K. Fukunaga, and K. Kato, Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions, Mol. Genet. Genomics, vol.274, pp.131-140, 2005.

S. Soyk, Bypassing negative epistasis on yield in tomato imposed by a domestication gene, Cell, vol.169, pp.1142-1155, 2017.

H. Xiao, N. Jiang, E. Schaffner, E. J. Stockinger, and E. Van-der-knaap, A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit, Science, vol.319, pp.1527-1530, 2008.

O. Jouffroy, S. Saha, L. Mueller, H. Quesneville, and F. Maumus, Comprehensive repeatome annotation reveals strong potential impact of repetitive elements on tomato ripening, BMC Genomics, vol.17, p.624, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02631886

, The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution, Nature, vol.485, pp.635-641, 2012.

D. Tieman, A chemical genetic roadmap to improved tomato flavor, Science, vol.355, pp.391-394, 2017.

S. Aflitos, Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing, Plant J, vol.80, pp.136-148, 2014.

L. Quadrana, The Arabidopsis thaliana mobilome and its impact at the species level, Elife, vol.5, p.15716, 2016.

B. L. Busch, Shoot branching and leaf dissection in tomato are regulated by homologous gene modules, Plant Cell, vol.23, pp.3595-3609, 2011.

M. V. Roldan, Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato, Sci. Rep, vol.7, p.4402, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606968

T. Cavalier-smith, How selfish is DNA?, Nature, vol.285, pp.617-618, 1980.

L. Quadrana, Transposition favors the generation of large effect mutations that may facilitate rapid adaption, Nat. Commun, vol.10, p.3421, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02398702

J. M. Cridland, K. R. Thornton, and A. D. Long, Gene expression variation in Drosophila melanogaster due to rare transposable element insertion alleles of large effect, Genetics, vol.199, pp.85-93, 2015.

T. Stuart, Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation, vol.5, p.20777, 2016.

J. Uzunovi?, E. B. Josephs, J. R. Stinchcombe, and S. I. Wright, Transposable elements are important contributors to standing variation in gene expression in Capsella grandiflora, Mol. Biol. Evol, vol.36, pp.1734-1745, 2019.

G. Zhu, Rewiring of the fruit metabolome in tomato breeding, Cell, vol.172, pp.249-261, 2018.

Z. Wang, A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses, Genes Dev, vol.32, pp.1155-1160, 2018.

C. Zhang, Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato, Theor. Appl. Genet, vol.126, pp.2643-2653, 2013.

G. Andolfo, Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq, BMC Plant Biol, vol.14, p.120, 2014.

M. Saladié, J. K. Rose, D. J. Cosgrove, and C. Catalá, Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action, Plant J, vol.47, pp.282-295, 2006.

G. B. Seymour, N. H. Chapman, B. L. Chew, and J. K. Rose, Regulation of ripening and opportunities for control in tomato and other fruits, Plant Biotechnol. J, vol.11, pp.269-278, 2013.

R. G. Fray and D. Grierson, Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression, Plant Mol. Biol, vol.22, pp.589-602, 1993.

J. A. Jenkins, The origin of the cultivated tomato, Economic Bot, vol.2, pp.379-392, 1948.

I. T. Baldwin, Plant volatiles, Curr. Biol, vol.20, pp.392-397, 2010.

Y. Tadmor, Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication, J. Agric. Food Chem, vol.50, 2002.

S. Kim, Allyl/propenyl phenol synthases from the creosote bush and engineering production of specialty/commodity chemicals, eugenol/ isoeugenol, in Escherichia coli, Arch. Biochem. Biophys, vol.541, pp.37-46, 2014.

Y. Eshed and D. Zamir, An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL, Genetics, vol.141, pp.1147-1162, 1995.

A. Bolger, The genome of the stress-tolerant wild tomato species Solanum pennellii, Nat. Genet, vol.46, pp.1034-1037, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204066

D. M. Tieman, Identification of loci affecting flavour volatile emissions in tomato fruits, J. Exp. Bot, vol.57, pp.887-896, 2006.

H. Razifard, Genomic evidence for complex domestication history of the cultivated tomato in Latin America, Mol. Biol. Evol, vol.37, pp.1118-1132, 2020.

M. Carpentier, Retrotranspositional landscape of Asian rice revealed by 3000 genomes, Nat. Commun, vol.10, p.24, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02098307

P. Baduel, L. Quadrana, B. Hunter, K. Bomblies, and V. Colot, Relaxed purifying selection in autopolyploids drives transposable element overaccumulation which provides variants for local adaptation, Nat. Commun, vol.10, p.5818, 2019.

S. R. Eichten, T. Stuart, A. Srivastava, R. Lister, and J. O. Borevitz, DNA methylation profiles of diverse Brachypodium distachyon align with underlying genetic diversity, Genome Res, vol.26, pp.1520-1531, 2016.

A. Macko-podgórni, K. Stelmach, K. Kwolek, and D. Grzebelus, Stowaway miniature inverted repeat transposable elements are important agents driving recent genomic diversity in wild and cultivated carrot, Mob. DNA, vol.1, pp.1-17, 2019.

A. Rogivue, Genome-wide variation in nucleotides and retrotransposons in alpine populations of Arabis alpina (Brassicaceae), Mol. Ecol. Resour, vol.19, pp.773-787, 2019.

J. A. Ågren, H. Huang, and S. I. Wright, Transposable element evolution in the allotetraploid Capsella bursa-pastoris, Am. J. Bot, vol.103, pp.1197-1202, 2016.

M. Alonge, Major Impacts of widespread structural variation on gene expression and crop improvement in tomato, Cell, vol.182, pp.145-161, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02927024

T. P. Michael, High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell, Nat. Commun, vol.9, p.541, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02626875

P. Baduel, L. Quadrana, and V. Colot, Efficient detection of transposable element insertion polymorphisms between genomes using short-read sequencing data, 2020.

M. Alonge, RaGOO: fast and accurate reference-guided scaffolding of draft genomes, Genome Biol, vol.20, p.224, 2019.

P. Vendrell-mir, A benchmark of transposon insertion detection tools using real data, Mob. DNA, vol.10, p.53, 2019.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

S. Purcell, PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet, vol.81, pp.559-575, 2007.

H. M. Kang, Variance component model to account for sample structure in genome-wide association studies, Nat. Genet, vol.42, pp.348-354, 2010.

S. D. Turner, qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots, 2014.

S. Nurk, A. Bankevich, and D. Antipov, Assembling genomes and minimetagenomes from highly chimeric reads, Res. Comput. Mol. Biol, vol.10, pp.158-170, 2013.

P. Scheet and M. Stephens, A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase, Am. J. Hum. Genet, vol.78, pp.629-644, 2006.

H. Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics, vol.34, pp.3094-3100, 2018.