N. N. Pavlova and C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab, vol.23, pp.27-47, 2016.

N. Hay, Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy?, Nat. Rev. Cancer, vol.16, pp.635-649, 2016.

A. Nencioni, I. Caffa, S. Cortellino, and V. D. Longo, Fasting and cancer: molecular mechanisms and clinical application, Nat. Rev. Cancer, vol.18, pp.707-719, 2018.

Y. P. Wang and Q. Y. Lei, Metabolite sensing and signaling in cell metabolism, Signal Transduct. Target. Ther, vol.3, p.30, 2018.

L. Galdieri, T. Zhang, D. Rogerson, R. Lleshi, and A. Vancura, Protein acetylation and acetyl coenzyme a metabolism in budding yeast, Eukaryot. Cell, vol.13, pp.1472-1483, 2014.

F. Pietrocola, L. Galluzzi, . Bravo-san, J. M. Pedro, F. Madeo et al., Acetyl coenzyme A: a central metabolite and second messenger, Cell Metab, vol.21, pp.805-821, 2015.

A. A. Cluntun, The rate of glycolysis quantitatively mediates specific histone acetylation sites, Cancer Metab, vol.3, p.10, 2015.

L. Galdieri and A. Vancura, Acetyl-CoA carboxylase regulates global histone acetylation, J. Biol. Chem, vol.287, pp.23865-23876, 2012.

S. Sivanand, I. Viney, and K. E. Wellen, Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation, Trends Biochem. Sci, vol.43, pp.61-74, 2018.

K. E. Wellen, ATP-citrate lyase links cellular metabolism to histone acetylation, Science, vol.324, pp.1076-1080, 2009.

L. Cai, B. M. Sutter, B. Li, and B. P. Tu, Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes, Mol. Cell, vol.42, pp.426-437, 2011.

S. Krishna and S. Laxman, A minimal "push-pull" bistability model explains oscillations between quiescent and proliferative cell states, Mol. Biol. Cell, vol.29, pp.2243-2258, 2018.

L. Shi and B. P. Tu, Acetyl-CoA and the regulation of metabolism: mechanisms and consequences, Curr. Opin. Cell Biol, vol.33, pp.125-131, 2015.

B. Smets, Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae, Curr. Genet, vol.56, pp.1-32, 2010.

R. Diaz-ruiz, M. Rigoulet, and A. Devin, The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression, Biochim. Biophys. Acta, vol.1807, pp.568-576, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00520968

W. Ai, P. G. Bertram, C. K. Tsang, T. F. Chan, and X. F. Zheng, Regulation of subtelomeric silencing during stress response, Mol. Cell, vol.10, pp.1295-1305, 2002.

J. Zhou, B. O. Zhou, B. A. Lenzmeier, and J. Q. Zhou, Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation, Nucleic Acids Res, vol.37, pp.3699-3713, 2009.

G. Kyrion, K. Liu, C. Liu, and A. J. Lustig, RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae, Genes Dev, vol.7, pp.1146-1159, 1993.

X. Zhao, E. G. Muller, and R. Rothstein, A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools, Mol. Cell, vol.2, pp.329-340, 1998.

Z. Chen, E. A. Odstrcil, B. P. Tu, and S. L. Mcknight, Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity, Science, vol.316, pp.1916-1919, 2007.

E. A. Schroeder, N. Raimundo, and G. S. Shadel, Epigenetic silencing mediates mitochondria stress-induced longevity, Cell Metab, vol.17, pp.954-964, 2013.

K. J. Simpson-lavy, A. Bronstein, M. Kupiec, and M. Johnston, Cross-talk between carbon metabolism and the DNA damage response in S. cerevisiae, Cell Rep, vol.12, pp.1865-1875, 2015.

E. Ferrari, PP2A controls genome integrity by integrating nutrientsensing and metabolic pathways with the DNA damage response, Mol. Cell, vol.67, pp.266-281, 2017.

M. A. Lebedeva and G. S. Shadel, Cell cycle-and ribonucleotide reductasedriven changes in mtDNA copy number influence mtDNA Inheritance without compromising mitochondrial gene expression, Cell Cycle, vol.6, pp.2048-2057, 2007.

P. Zheng, SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase, Mol. Cell Biol, vol.13, pp.5829-5842, 1993.

Y. Sanchez, Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways, Science, vol.271, pp.357-360, 1996.

A. Gunjan and A. Verreault, A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae, Cell, vol.115, pp.537-549, 2003.

R. K. Singh, M. H. Kabbaj, J. Paik, and A. Gunjan, Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis, Nat. Cell Biol, vol.11, pp.925-933, 2009.

C. F. Kurat, Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation, Proc. Natl Acad. Sci. USA, vol.111, pp.14124-14129, 2014.

Q. Mei, Regulation of DNA replication-coupled histone gene expression, Oncotarget, vol.8, pp.95005-95022, 2017.

J. Zhao, B. Dynlacht, T. Imai, T. Hori, and E. Harlow, Expression of NPAT, a novel substrate of cyclin E-CDK2, promotes S-phase entry, Genes Dev, vol.12, pp.456-461, 1998.

F. M. Bastos-de-oliveira, Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication, Mol. Cell, vol.57, pp.1124-1132, 2015.

M. E. Huang and R. D. Kolodner, A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage, Mol. Cell, vol.17, pp.709-720, 2005.

F. Hediger, F. R. Neumann, G. Van-houwe, K. Dubrana, and S. M. Gasser, Live imaging of telomeres: yKu and Sir proteins define redundant telomereanchoring pathways in yeast, Curr. Biol, vol.12, pp.2076-2089, 2002.

R. Bermejo, The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores, Cell, vol.146, pp.233-246, 2011.

J. Dai, Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants, Cell, vol.134, pp.1066-1078, 2008.

T. A. Hoggard, Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins, PLoS Genet, vol.14, p.1007418, 2018.

J. H. Waterborg, Dynamics of histone acetylation in Saccharomyces cerevisiae, Biochemistry, vol.40, pp.2599-2605, 2001.

B. J. Thomas and R. Rothstein, Elevated recombination rates in transcriptionally active DNA, Cell, vol.56, pp.619-630, 1989.

V. Baldo, V. Testoni, G. Lucchini, and M. P. Longhese, Dominant TEL1-hy mutations compensate for Mec1 lack of functions in the DNA damage response, Mol. Cell Biol, vol.28, pp.358-375, 2008.

E. Apweiler, Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis, BMC Genomics, vol.13, p.239, 2012.

M. H. Hauer, Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates, Nat. Struct. Mol. Biol, vol.24, pp.99-107, 2017.

M. C. Lanz, Separable roles for Mec1/ATR in genome maintenance, DNA replication, and checkpoint signaling, Genes Dev, vol.32, pp.822-835, 2018.

G. Gao, NPAT expression is regulated by E2F and is essential for cell cycle progression, Mol. Cell Biol, vol.23, pp.2821-2833, 2003.

H. Kaygun and W. F. Marzluff, Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1, Nat. Struct. Mol. Biol, vol.12, pp.794-800, 2005.

M. Cockell, M. Gotta, F. Palladino, S. G. Martin, and S. M. Gasser, Targeting Sir proteins to sites of action: a general mechanism for regulated repression, Cold Spring Harb. Symp. Quant. Biol, vol.63, pp.401-412, 1998.

B. Steglich, S. Sazer, and K. Ekwall, Transcriptional regulation at the yeast nuclear envelope, Nucleus, vol.4, pp.379-389, 2013.

A. Kumar, ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress, Cell, vol.158, pp.633-646, 2014.

I. Maze, Critical role of histone turnover in neuronal transcription and plasticity, Neuron, vol.87, pp.77-94, 2015.

L. Cai and B. P. Tu, Driving the cell cycle through metabolism, Annu. Rev. Cell Dev. Biol, vol.28, pp.59-87, 2012.

B. P. Tu, A. Kudlicki, M. Rowicka, and S. L. Mcknight, Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes, Science, vol.310, pp.1152-1158, 2005.

G. C. Santos, M. Zielenska, M. Prasad, and J. A. Squire, Chromosome 6p amplification and cancer progression, J. Clin. Pathol, vol.60, pp.1-7, 2007.

S. Zhao, Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition, Proc. Natl Acad. Sci. USA, vol.113, pp.12238-12243, 2016.

X. Li, Identification of a histone family gene signature for predicting the prognosis of cervical cancer patients, Sci. Rep, vol.7, p.16495, 2017.

F. L. Monteiro, The histone H2A isoform Hist2h2ac is a novel regulator of proliferation and epithelial-mesenchymal transition in mammary epithelial and in breast cancer cells, Cancer Lett, vol.396, pp.42-52, 2017.

S. Rogers, Cyclin E2 is the predominant E-cyclin associated with NPAT in breast cancer cells, Cell Div, vol.10, p.1, 2015.

S. Saarinen, Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma, Blood, vol.118, pp.493-498, 2011.

S. Fiorani, G. Mimun, L. Caleca, D. Piccini, and A. Pellicioli, Characterization of the activation domain of the Rad53 checkpoint kinase, Cell Cycle, vol.7, pp.493-499, 2008.

S. Ronzoni, M. Faretta, M. Ballarini, P. Pelicci, and S. Minucci, New method to detect histone acetylation levels by flow cytometry, Cytometry A, vol.66, pp.52-61, 2005.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-1191, 2009.

A. Beyer, Integrated assessment and prediction of transcription factor binding, PLoS Comput. Biol, vol.2, p.70, 2006.

M. A. Hibbs, Exploring the functional landscape of gene expression: directed search of large microarray compendia, Bioinformatics, vol.23, pp.2692-2699, 2007.

P. Therizols, T. Duong, B. Dujon, C. Zimmer, and E. Fabre, Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres, Proc. Natl Acad. Sci. USA, vol.107, pp.2025-2030, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02082757

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl Acad. Sci. USA, vol.98, pp.5116-5121, 2001.

A. Walvekar, Z. Rashida, H. Maddali, and S. Laxman, A versatile LC-MS/MS approach for comprehensive, quantitative analysis of central metabolic pathways, Wellcome open Res, vol.3, p.122, 2018.

C. Bruhn, The Rad53CHK1/CHK2-Spt21NPAT and Tel1ATM axes couple glucose tolerance to histone dosage and subtelomeric silencing, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02950793