, PE/Cy5 anti-mouse CD127 (IL-7Ralpha) (A7R34) (1/100) Biolegend, p.135016

. Percp/cy5, 5 anti-mouse CD25 (PC61) (1/100) Biolegend 102029

, Brilliant Violet 605 anti-mouse CD69 (HI-2F3) (1/100) Biolegend 104530 PE anti-mouse CD11c (N418) (1/100) Biolegend 117308

, PerCP-eFluor 710 anti-mouse CD170 (Siglec-F) (IRNM44N) (1/100) eBioscience, pp.46-1702

, Alexa Fluor 700 anti-mouse IFN-? (XMG1.2) (1/100) BD, Biosciences, vol.557998

. Percp-cy5, , vol.5

S. S. Pereira and J. I. Alvarez-leite, Low-grade inflammation, obesity, and diabetes, Curr. Obes. Rep, vol.3, pp.422-431, 2014.

M. F. Gregor and G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol, vol.29, pp.415-445, 2011.

M. Y. Donath and S. E. Shoelson, Type 2 diabetes as an inflammatory disease, Nat. Rev. Immunol, vol.11, pp.98-107, 2011.

S. U. Amano, Local proliferation of macrophages contributes to obesityassociated adipose tissue inflammation, Cell Metab, vol.19, pp.162-171, 2014.

G. S. Hotamisligil, N. S. Shargill, and B. M. Spiegelman, Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance, Science, vol.259, pp.87-91, 1993.

A. Bertola, Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients, Diabetes, vol.61, pp.2238-2247, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726176

R. W. Grant and V. D. Dixit, Adipose tissue as an immunological organ, Obesity, vol.23, pp.512-518, 2015.

S. Nishimura, CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity, Nat. Med, vol.15, pp.914-920, 2009.

S. Talukdar, Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase, Nat. Med, vol.18, pp.1407-1412, 2012.

F. M. Wensveen, NK cells link obesity-induced adipose stress to inflammation and insulin resistance, Nat. Immunol, vol.16, pp.376-385, 2015.

B. C. Lee, Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity, Cell Metab, vol.23, pp.685-698, 2016.

A. B. Molofsky, Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages, J. Exp. Med, vol.210, pp.535-549, 2013.

D. Wu, Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis, Science, vol.332, pp.243-247, 2011.

M. Feuerer, Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters, Nat. Med, vol.15, pp.930-939, 2009.

J. C. Mcnelis and J. M. Olefsky, Macrophages, immunity, and metabolic disease, Immunity, vol.41, pp.36-48, 2014.

D. Cipolletta, PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells, Nature, vol.486, pp.549-553, 2012.

P. J. Turnbaugh, The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice, Sci. Transl. Med, vol.1, pp.6-14, 2009.

K. M. Maslowski, Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43, Nature, vol.461, pp.1282-1286, 2009.

K. M. Maslowski and C. R. Mackay, Diet, gut microbiota and immune responses, Nat. Immunol, vol.12, pp.5-9, 2011.

A. Toubal, I. Nel, S. Lotersztajn, and A. Lehuen, Mucosal-associated invariant T cells and disease, Nature Rev. Immunol, vol.19, pp.643-657, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02380171

H. Luck, Regulation of obesity-related insulin resistance with gut antiinflammatory agents, Cell Metab, vol.21, pp.527-542, 2015.

M. Monteiro-sepulveda, Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling, Cell Metab, vol.22, pp.113-124, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02540998

L. Garidou, The gut microbiota regulates intestinal CD4 T cells expressing RORgammat and controls metabolic disease, Cell Metab, vol.22, pp.100-112, 2015.

D. A. Winer, H. Luck, S. Tsai, and S. Winer, The intestinal immune system in obesity and insulin resistance, Cell Metab, vol.23, pp.413-426, 2016.

M. Membrez, Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice, FASEB J, vol.22, pp.2416-2426, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00409179

B. S. Samuel, Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, pp.16767-16772, 2008.

P. J. Turnbaugh, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.444, pp.1027-1031, 2006.

J. Henao-mejia, Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity, Nature, vol.482, pp.179-185, 2012.

E. Treiner, Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature, vol.422, pp.164-169, 2003.

S. Porcelli, C. E. Yockey, M. B. Brenner, and S. P. Balk, Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8-alpha/ beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain, J. Exp. Med, vol.178, pp.1-16, 1993.

K. Franciszkiewicz, MHC class I-related molecule, MR1, and mucosalassociated invariant T cells, Immunol. Rev, vol.272, pp.120-138, 2016.

L. Bourhis and L. , Antimicrobial activity of mucosal-associated invariant T cells, Nat. Immunol, vol.11, pp.701-708, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550333

A. J. Corbett, T-cell activation by transitory neo-antigens derived from distinct microbial pathways, Nature, vol.509, pp.361-365, 2014.

L. Kjer-nielsen, MR1 presents microbial vitamin B metabolites to MAIT cells, Nature, vol.491, pp.717-723, 2012.

E. Carolan, Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity, J. Immunol, vol.194, pp.5775-5780, 2015.

I. Magalhaes, Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients, J. Clin. Investig, vol.125, pp.1752-1762, 2015.

M. Zhang, Activation-induced cell death of mucosal-associated invariant T cells is amplified by OX40 in type 2 diabetic patients, J. Immunol, vol.203, pp.2614-2620, 2019.

A. Rahimpour, Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers, J. Exp. Med, vol.212, pp.1095-1108, 2015.

R. Reantragoon, Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells, J. Exp. Med, vol.210, pp.2305-2320, 2013.

K. E. Wellen and G. S. Hotamisligil, Obesity-induced inflammatory changes in adipose tissue, J. Clin. Investig, vol.112, pp.1785-1788, 2003.

H. S. Schipper, B. Prakken, E. Kalkhoven, and M. Boes, Adipose tissue-resident immune cells: key players in immunometabolism, Trends Endocrinol. Metab.: TEM, vol.23, pp.407-415, 2012.

S. J. Szabo, A novel transcription factor, T-bet, directs Th1 lineage commitment, Cell, vol.100, pp.655-669, 2000.

S. B. Eckle, A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells, J. Exp. Med, vol.211, pp.1585-1600, 2014.

A. N. Keller, Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells, Nat. Immunol, vol.18, pp.402-411, 2017.

S. Huang, MR1 antigen presentation to mucosal-associated invariant T cells was highly conserved in evolution, Proc. Natl Acad. Sci. USA, vol.106, pp.8290-8295, 2009.

H. F. Koay, A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage, Nat. Immunol, vol.17, pp.1300-1311, 2016.

F. Legoux, Molecular mechanisms of lineage decisions in metabolitespecific T cells, Nat. Immunol, vol.20, pp.1244-1255, 2019.

F. Legoux, Microbial metabolites control the thymic development of mucosal-associated invariant T cells, Science, vol.366, pp.494-499, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02349402

N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease, Nat. Rev. Immunol, vol.11, pp.85-97, 2011.

A. Chawla, E. J. Schwarz, D. D. Dimaculangan, and M. A. Lazar, Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation, Endocrinology, vol.135, pp.798-800, 1994.

S. R. Farmer, Regulation of PPARgamma activity during adipogenesis, Int. J. Obes, vol.29, issue.1, pp.13-16, 2005.

E. Bettelli, Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature, vol.441, pp.235-238, 2006.

A. W. Ferrante, The immune cells in adipose tissue, Diabetes, Obes. Metab, vol.15, issue.3, pp.34-38, 2013.

A. Laparra, The frequencies of immunosuppressive cells in adipose tissue differ in human, non-human primate, and mouse models, Front. Immunol, vol.10, p.117, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02143406

S. Touch, Mucosal-associated invariant T (MAIT) cells are depleted and prone to apoptosis in cardiometabolic disorders, FASEB J, vol.32, pp.5078-5089, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02380779

O. Rouxel, Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes, Nat. Immunol, vol.18, pp.1321-1331, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02339318

O. Rouxel and A. Lehuen, Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases, Immunol. Cell Biol, vol.96, pp.618-629, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02339443

P. Hegde, Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver, Nat. Commun, vol.9, p.2146, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02339519

I. Martinez, Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters, Appl. Environ. Microbiol, vol.79, pp.516-524, 2013.

M. Serino, Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota, Gut, vol.61, pp.543-553, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00726182

I. Martinez, Gut microbiome composition is linked to whole graininduced immunological improvements, ISME J, vol.7, pp.269-280, 2013.

J. Wells, Immunomodulatory mechanisms of lactobacilli, Microb. Cell Factories, vol.10, issue.1, p.17, 2011.

P. D. Cani, Changes in gut microbiota control metabolic endotoxemiainduced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes, vol.57, pp.1470-1481, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410066

P. D. Cani, Microbiota and metabolites in metabolic diseases, Nat. Rev. Endocrinol, vol.15, pp.69-70, 2019.

C. Soudais, In vitro and in vivo analysis of the gram-negative bacteriaderived riboflavin precursor derivatives activating mouse MAIT cells, J. Immunol, vol.194, pp.4641-4649, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01433111

F. H. Karlsson, Gut metagenome in European women with normal, impaired and diabetic glucose control, Nature, vol.498, pp.99-103, 2013.

T. S. Hinks, Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality, Cell Rep, vol.28, pp.3249-3262, 2019.

T. Leng, TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions, Cell Rep, vol.28, p.3075, 2019.

E. Martin, Stepwise Development of MAIT Cells in Mouse and Human, PLoS Biol, vol.7, p.1000054, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00707793

M. Lochner, In vivo equilibrium of proinflammatory IL-17 + and regulatory IL-10 + Foxp3 + ROR?t + T cells, J. Exp. Med, vol.205, pp.1381-1393, 2008.

R. Reantragoon, Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor, J. Exp. Med, vol.209, pp.761-774, 2012.

C. J. Barnstable, Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis, Cell, vol.14, pp.9-20, 1978.

J. G. Markle, Sex differences in the gut microbiome drive hormonedependent regulation of autoimmunity, Science, vol.339, pp.1084-1088, 2013.

T. Magoc and S. L. Salzberg, FLASH: fast length adjustment of short reads to improve genome assemblies, Bioinformatics, vol.27, pp.2957-2963, 2011.

P. D. Schloss, Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Appl. Environ. Microbiol, vol.75, pp.7537-7541, 2009.

R. C. Edgar, UCHIME improves sensitivity and speed of chimera detection, Bioinformatics, vol.27, pp.2194-2200, 2011.

T. Z. Desantis, Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB, Appl. Environ. Microbiol, vol.72, pp.5069-5072, 2006.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Appl. Environ. Microbiol, vol.73, pp.5261-5267, 2007.

Y. Hochberg and Y. Benjamini, More powerful procedures for multiple significance testing, Stat. Med, vol.9, pp.811-818, 1990.