T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett, vol.131, pp.5-17, 2002.

C. V. Robinson, A. Sali, and W. Baumeister, The molecular sociology of the cell, Nature, vol.450, pp.973-982, 2007.

J. Snijder, R. J. Rose, D. Veesler, J. E. Johnson, and A. J. Heck, Studying 18 MDa virus assemblies with native mass spectrometry, Angew. Chem. -Int. Ed, vol.52, pp.4020-4023, 2013.

T. Doussineau, Mass determination of entire amyloid fibrils by using mass spectrometry, Angew. Chem. Int. Ed, vol.55, pp.2340-2344, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01284122

D. Z. Keifer, T. Motwani, C. M. Teschke, and M. F. Jarrold, Measurement of the accurate mass of a 50 MDa infectious virus, Rapid Commun. Mass Spectrom, vol.30, pp.1957-1962, 2016.

J. Chaste, A nanomechanical mass sensor with yoctogram resolution, Nat. Nanotechnol, vol.7, pp.301-304, 2012.

M. S. Hanay, Single-protein nanomechanical mass spectrometry in real time, Nat. Nanotechnol, vol.7, pp.602-608, 2012.

E. Sage, Neutral particle mass spectrometry with nanomechanical systems, Nat. Commun, vol.6, p.6482, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01616537

E. Sage, Single-particle mass spectrometry with arrays of frequencyaddressed nanomechanical resonators, Nat. Commun, vol.9, p.3283, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02191322

S. Stassi, Large-scale parallelization of nanomechanical mass spectrometry with weakly-coupled resonators, Nat. Commun, vol.10, p.3647, 2019.

S. Dominguez-medina, Neutral mass spectrometry of virus capsids above 100 megadaltons with nanomechanical resonators, Science, vol.362, pp.918-922, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02083419

O. Malvar, Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators, Nat. Commun, vol.7, p.13452, 2016.

J. E. Sader, M. S. Hanay, A. P. Neumann, and M. L. Roukes, Mass spectrometry using nanomechanical systems: beyond the point-mass approximation, Nano Lett, vol.18, pp.1608-1614, 2018.

I. Favero and K. Karrai, Optomechanics of deformable optical cavities, Nat. Photonics, vol.3, pp.201-205, 2009.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys, vol.86, p.1391, 2014.

A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, and O. Painter, A highresolution microchip optomechanical accelerometer, Nat. Photonics, vol.6, pp.768-772, 2012.

B. Dong, H. Cai, J. M. Tsai, D. L. Kwong, and A. Q. Liu, An on-chip optomechanical accelerometer, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp.641-644, 2013.

A. Venkatasubramanian, Nano-optomechanical systems for gas chromatography, Nano Lett, vol.16, pp.6975-6981, 2016.

W. Yu, W. C. Jiang, Q. Lin, and T. Lu, Cavity optomechanical spring sensing of single molecules, Nat. Commun, vol.7, pp.1-9, 2016.

P. Etienne-allain, Optomechanical resonating probe for very high frequency sensing of atomic forces, Nanoscale, vol.12, pp.2939-2935, 2020.

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-zadeh, Sub-pg mass sensing and measurement with an optomechanical oscillator, Opt. Express, vol.21, p.19555, 2013.

E. Gil-santos, Optomechanical detection of vibration modes of a single bacterium, Nat. Nanotechnol, vol.15, pp.467-474, 2020.

M. Sansa, Frequency fluctuations in silicon nanoresonators, Nat. Nanotechnol, vol.11, pp.552-559, 2016.

A. Rahafrooz and S. Pourkamali, Fabrication and characterization of thermally actuated micromechanical resonators for airborne particle mass sensing: I. Resonator design and modeling, J. Micromech. Microeng, vol.20, p.125018, 2010.

R. Perelló-roig, J. Verd, J. Barceló, S. Bota, and J. Segura, A 0.35-?m CMOS-MEMS oscillator for high-resolution distributed mass detection, vol.9, p.484, 2018.

L. Ding, Gallium Arsenide Disk Optomechanical Resonators, Handbook of Optical Microcavities, vol.526, 2014.

L. Schwab, Comprehensive optical losses investigation of VLSI Silicon optomechanical ring resonator sensors, 2018 IEEE International Electron Devices Meeting (IEDM), 2018.
URL : https://hal.archives-ouvertes.fr/hal-02365398

M. L. Gorodetksy, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, Determination of the vacuum optomechanical coupling rate using frequency noise calibration, Opt. Express, vol.18, pp.23236-23246, 2010.

S. Bernabé, Chip-to-chip optical interconnections between stacked selfaligned SOI photonic chips, Opt. Express, vol.20, pp.7886-7894, 2012.

D. W. Allan, Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.34, pp.647-654, 1987.

M. Yuksel, Nonlinear nanomechanical mass spectrometry at the singlenanoparticle level, Nano Lett, vol.19, pp.3583-3589, 2019.

A. J. Macdonald, Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator, Rev. Sci. Instrum, vol.86, p.13107, 2015.

G. Santos and E. , Light-mediated cascaded locking of multiple nanooptomechanical oscillators, Phys. Rev. Lett, vol.118, p.63605, 2017.

R. Morel, A. Brenac, P. Bayle-guillemaud, C. Portemont, and F. L. Rizza, Growth and properties of cobalt clusters made by sputtering gas-aggregation, Eur. Phys. J, vol.24, pp.287-290, 2003.

V. T. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, Wavelengthdivision multiplexing of nano-optomechanical doubly clamped beam systems, Opt. Lett, vol.40, p.1948, 2015.

L. Ding, High frequency GaAs nano-optomechanical disk resonator, Phys. Rev. Lett, vol.105, p.263903, 2010.