D. Louis, H. Ohgaki, O. D. Wiestler, and W. Cavenee, WHO Classification of Tumours of the Central Nervous System, 2016.

V. Ramaswamy, Risk stratification of childhood medulloblastoma in the molecular era: the current consensus, Acta Neuropathol, vol.131, pp.821-831, 2016.

M. D. Taylor, Molecular subgroups of medulloblastoma: the current consensus, Acta Neuropathol, vol.123, pp.465-472, 2012.

P. A. Northcott, Medulloblastoma comprises four distinct molecular variants, J. Clin. Oncol, vol.29, pp.1408-1414, 2011.

F. M. Cavalli, Intertumoral heterogeneity within medulloblastoma subgroups, Cancer Cell, vol.31, p.736, 2017.

E. C. Schwalbe, Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study, Lancet Oncol, vol.18, pp.958-971, 2017.

C. Y. Lin, Active medulloblastoma enhancers reveal subgroup-specific cellular origins, Nature, vol.530, pp.57-62, 2016.

U. Schuller, Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma, Cancer Cell, vol.14, pp.123-134, 2008.

Z. J. Yang, Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells, Cancer Cell, vol.14, pp.135-145, 2008.

P. Gibson, Subtypes of medulloblastoma have distinct developmental origins, Nature, vol.468, pp.1095-1099, 2010.

M. C. Vladoiu, Childhood cerebellar tumours mirror conserved fetal transcriptional programs, Nature, vol.572, pp.67-73, 2019.

V. Hovestadt, Resolving medulloblastoma cellular architecture by singlecell genomics, Nature, vol.572, pp.74-79, 2019.

N. K. Lytle, A. G. Barber, and T. Reya, Stem cell fate in cancer growth, progression and therapy resistance, Nat. Rev. Cancer, vol.18, pp.669-680, 2018.

I. Matsuo, S. Kuratani, C. Kimura, N. Takeda, and S. Aizawa, Mouse Otx2 functions in the formation and patterning of rostral head, Genes Dev, vol.9, pp.2646-2658, 1995.

D. Acampora, Forebrain and midbrain regions are deleted in Otx2-/-mutants due to a defective anterior neuroectoderm specification during gastrulation, Development, vol.121, pp.3279-3290, 1995.

S. L. Ang, A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain, Development, vol.122, pp.243-252, 1996.

J. L. Zagozewski, Q. Zhang, V. I. Pinto, J. T. Wigle, and D. D. Eisenstat, The role of homeobox genes in retinal development and disease, Dev. Biol, vol.393, pp.195-208, 2014.

D. C. Adamson, OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas, Cancer Res, vol.70, pp.181-191, 2010.

J. Bunt, OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells, Int. J. Cancer, vol.131, pp.21-32, 2012.

J. Bunt, Joint binding of OTX2 and MYC in promotor regions is associated with high gene expression in medulloblastoma, PLoS ONE, vol.6, p.26058, 2011.

J. Bunt, Regulation of cell cycle genes and induction of senescence by overexpression of OTX2 in medulloblastoma cell lines, Mol. Cancer Res, vol.8, pp.1344-1357, 2010.

G. Boulay, OTX2 activity at distal regulatory elements shapes the chromatin landscape of group 3 medulloblastoma, Cancer Discov, vol.7, pp.288-301, 2017.

J. Bunt, OTX2 sustains a bivalent-like state of OTX2-bound promoters in medulloblastoma by maintaining their H3K27me3 levels, Acta Neuropathol, vol.125, pp.385-394, 2013.

R. Kaur, OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells, Dis. Model Mech, vol.8, pp.1295-1309, 2015.

M. Stromecki, Characterization of a novel OTX2-driven stem cell program in Group 3 and Group 4 medulloblastoma, Mol. Oncol, vol.12, pp.495-513, 2018.

Y. Pei, An animal model of MYC-driven medulloblastoma, Cancer Cell, vol.21, pp.155-167, 2012.

D. Kawauchi, A mouse model of the most aggressive subgroup of human medulloblastoma, Cancer Cell, vol.21, pp.168-180, 2012.

D. Kawauchi, Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells, Oncogene, vol.36, pp.5231-5242, 2017.

G. Robinson, Novel mutations target distinct subgroups of medulloblastoma, Nature, vol.488, pp.43-48, 2012.

J. A. Blake and M. R. Ziman, Pax genes: regulators of lineage specification and progenitor cell maintenance, Development, vol.141, pp.737-751, 2014.

J. Yeung, T. J. Ha, D. J. Swanson, and D. Goldowitz, A novel and multivalent role of pax6 in cerebellar development, J. Neurosci, vol.36, pp.9057-9069, 2016.

I. Holguera and C. Desplan, Neuronal specification in space and time, Science, vol.362, pp.176-180, 2018.

L. Liang, CD271(+) cells are diagnostic and prognostic and exhibit elevated MAPK activity in SHH medulloblastoma, Cancer Res, vol.78, pp.4745-4759, 2018.

P. A. Northcott, Subgroup-specific structural variation across 1,000 medulloblastoma genomes, Nature, vol.488, pp.49-56, 2012.

P. A. Northcott, The whole-genome landscape of medulloblastoma subtypes, Nature, vol.547, pp.311-317, 2017.

A. Garancher, NRL and CRX define photoreceptor identity and reveal subgroup-specific dependencies in medulloblastoma, Cancer Cell, vol.33, p.436, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347200

T. C. Archer, Proteomics, post-translational modifications, and integrative analyses reveal molecular heterogeneity within medulloblastoma subgroups, Cancer Cell, vol.34, 2018.

R. A. Carter, A single-cell transcriptional atlas of the developing murine cerebellum, Curr. Biol, vol.28, p.2912, 2018.

M. Yamada, Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons, J. Neurosci, vol.34, pp.4786-4800, 2014.

M. Hoshino, Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum, Neuron, vol.47, pp.201-213, 2005.

V. Ramaswamy and M. D. Taylor, Medulloblastoma: from myth to molecular, J. Clin. Oncol, vol.35, pp.2355-2363, 2017.

R. A. Saxton and D. M. Sabatini, mTOR signaling in growth, metabolism, and disease, Cell, vol.169, pp.361-371, 2017.

F. Beby and T. Lamonerie, The homeobox gene Otx2 in development and disease, Exp. Eye Res, vol.111, pp.9-16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00811762

C. Brandt, The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy, Neuropharmacology, vol.140, pp.107-120, 2018.

H. A. Luchman, Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival, Clin. Cancer Res, vol.20, pp.5756-5767, 2014.

L. Xia, PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells, Brain Res, vol.1521, pp.68-78, 2013.

S. N. Sansom, The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis, PLoS Genet, vol.5, p.1000511, 2009.

Y. Pei, HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma, Cancer Cell, vol.29, pp.311-323, 2016.

H. S. Friedman, Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283 Med, J. Neuropathol. Exp. Neurol, vol.44, pp.592-605, 1985.

T. Milde, HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment, J. Neurooncol, vol.110, pp.335-348, 2012.

S. Dietl, MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell-and Group 3-properties, BMC Cancer, vol.16, p.115, 2016.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, pp.2114-2120, 2014.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

L. Shen, diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates, PLoS ONE, vol.8, p.65598, 2013.

R. J. Kinsella, Ensembl BioMarts: a hub for data retrieval across taxonomic space, Database (Oxford), vol.2011, p.30, 2011.

Y. J. Cho, Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome, J. Clin. Oncol, vol.29, pp.1424-1430, 2011.

D. J. Mccarthy, Y. Chen, and G. K. Smyth, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation, Nucleic Acids Res, vol.40, pp.4288-4297, 2012.

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl Acad. Sci. USA, vol.102, pp.15545-15550, 2005.

D. Merico, R. Isserlin, O. Stueker, A. Emili, and G. D. Bader, Enrichment map: a network-based method for gene-set enrichment visualization and interpretation, PLoS ONE, vol.5, p.13984, 2010.

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

A. Forget, Aberrant ERBB4-SRC signaling as a hallmark of group 4 medulloblastoma revealed by integrative phosphoproteomic profiling, Cancer Cell, vol.34, p.377, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347170

R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, Salmon provides fast and bias-aware quantification of transcript expression, Nat. Methods, vol.14, pp.417-419, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

A. Zhu, J. G. Ibrahim, and M. Love, Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences, Bioinformatics, vol.35, pp.2084-2092, 2018.

G. Yu, L. G. Wang, Y. Han, and Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS, vol.16, pp.284-287, 2012.

A. Liberzon, Molecular signatures database (MSigDB) 3.0, Bioinformatics, vol.27, pp.1739-1740, 2011.

I. Korsunsky, Fast, sensitive and accurate integration of single-cell data with Harmony, Nat. Methods, vol.16, pp.1289-1296, 2019.

P. A. Northcott, Rapid, reliable, and reproducible molecular subgrouping of clinical medulloblastoma samples, Acta Neuropathol, vol.123, pp.615-626, 2012.