C. James, V. Ugo, J. Le-couédic, J. Staerk, F. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.434, pp.1144-1148, 2005.

R. Kralovics, F. Passamonti, A. Buser, S. Teo, R. Tiedt et al., A Gain-of-Function Mutation ofJAK2in Myeloproliferative Disorders, N. Engl. J. Med, vol.352, pp.1779-1790, 2005.

Y. Pikman, B. H. Lee, T. Mercher, E. Mcdowell, B. L. Ebert et al., MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia, PLoS Med, 2006.

T. Klampfl, N. C. Them, T. Berg, G. I. Vladimer, K. Bagienski et al., Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms, N. Engl. J. Med, vol.369, pp.2379-2390, 2013.

J. Nangalia, C. E. Massie, E. J. Baxter, F. L. Nice, G. Gundem et al., Somatic CALR mutations in myeloproliferative neoplasms with non-mutated JAK2, N. Engl. J. Med, vol.369, pp.2391-2405, 2013.

J. Staerk and S. N. Constantinescu, The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective, JAK-STAT, vol.2012, pp.184-190

R. C. Skoda, A. Duek, and J. Grisouard, Pathogenesis of myeloproliferative neoplasms, Exp. Hematol, vol.43, pp.599-608, 2015.

M. Kleppe, M. Kwak, P. Koppikar, M. Riester, M. Keller et al., JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response, Cancer Discov, vol.5, pp.316-331, 2015.

J. R. Lambert, T. Everington, D. C. Linch, and R. E. Gale, In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutant-positive patients: A new disease paradigm, Blood, vol.114, pp.3018-3023, 2009.

F. X. Schaub, R. Jäger, R. Looser, H. Hao-shen, S. Hermouet et al., Clonal analysis of deletions on chromosome 20q and JAK2-V617F in MPD suggests that del20q acts independently and is not one of the predisposing mutations for JAK2-V617F, Blood, vol.113, pp.2022-2027, 2009.

S. Hermouet, Pathogenesis of myeloproliferative neoplasms: More than mutations, Exp. Hematol, vol.43, pp.993-994, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01402448

S. Hermouet, E. Bigot-corbel, and B. Gardie, Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation, Mediat. Inflamm, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01402440

H. L. Geyer, A. C. Dueck, R. M. Scherber, and R. A. Mesa, Impact of Inflammation on Myeloproliferative Neoplasm Symptom Development, Mediat. Inflamm, 2015.

H. C. Hasselbalch, Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms, Expert Rev. Hematol, vol.7, pp.203-216, 2014.

N. Pemmaraju, H. Kantarjian, T. Kadia, J. Cortes, G. Borthakur et al., A phase I/II study of the Janus kinase (JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia, Clin. Lymphoma Myeloma Leuk, vol.15, pp.171-176, 2014.

S. Verstovsek, R. A. Mesa, J. Gotlib, R. S. Levy, V. Gupta et al., A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis, N. Engl. J. Med, vol.366, pp.799-807, 2012.

G. Greenfield, S. Mcpherson, K. I. Mills, and M. F. Mcmullin, The ruxolitinib effect: Understanding how molecular pathogenesis and epigenetic dysregulation impact therapeutic efficacy in myeloproliferative neoplasms, J. Transl. Med, vol.16, 2018.

B. Li, R. K. Rampal, and Z. Xiao, Targeted therapies for myeloproliferative neoplasms, Biomark. Res, vol.7, p.15, 2019.

G. Hobbs, S. Rozelle, and A. Mullally, The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms, Hematol. Clin, vol.31, pp.613-626, 2017.

J. Kiladjian, B. Cassinat, P. Turlure, N. Cambier, M. Roussel et al., High molecular response rate of polycythemia vera patients treated with pegylated interferon-2a, Blood, vol.108, pp.2037-2040, 2006.

J. Kiladjian, C. Chomienne, and P. Fenaux, Interferon-? therapy in bcr-abl-negative myeloproliferative neoplasms, Leukemia, vol.22, 1990.

J. Desterro, D. P. Mclornan, N. Curto-garcia, J. O'sullivan, S. Alimam et al., Essential thrombocythaemia treated with recombinant interferon: 'real world' United Kingdom referral centre experience, Br. J. Haematol, vol.186, pp.561-564, 2019.

R. K. Pedersen, M. Andersen, T. A. Knudsen, Z. Sajid, J. Gudmand-hoeyer et al., Data-driven analysis of JAK2V617F kinetics during interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms, Cancer Med, vol.2020, pp.2039-2051

M. J. Aman, G. Bug, E. W. Aulitzky, C. Huber, and C. Peschel, Inhibition of interleukin-11 by interferon-alpha in human bone marrow stromal cells, Exp. Hematol, vol.24, pp.863-867, 1996.

S. Radaeva, B. Jaruga, F. Hong, W. Kim, S. Fan et al., Interferon-? activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes, Gastroenterology, vol.122, pp.1020-1034, 2002.

M. E. Bjørn and H. C. Hasselbalch, Minimal residual disease or cure in MPNs? Rationales and perspectives on combination therapy with interferon-alpha2 and ruxolitinib, Expert Rev. Hematol, vol.94, pp.1-12, 2017.

S. U. Mikkelsen, L. Kjaer, M. E. Bjørn, T. A. Knudsen, A. L. Sørensen et al., Safety and efficacy of combination therapy of interferon-?2 and ruxolitinib in polycythemia vera and myelofibrosis, Cancer Med, vol.7, pp.3571-3581, 2018.

J. Czech, S. Cordua, B. Weinbergerova, J. Baumeister, A. Crepcia et al., JAK2V617F but not CALR mutations confer increased molecular responses to interferon-? via JAK1/STAT1 activation, Leukemia, vol.33, pp.995-1010, 2019.

H. C. Hasselbalch, Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: Is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood, vol.119, pp.3219-3225, 2012.

H. C. Hasselbalch, Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?, Leuk. Res, vol.37, pp.214-220, 2013.

S. Y. Kristinsson, O. Landgren, J. Samuelsson, M. Bjorkholm, and L. R. Goldin, Autoimmunity and the risk of auto-immune neoplasms, Haematologica, vol.7, pp.1216-1220, 2010.

K. M. Pedersen, M. Bak, A. L. Sørensen, A. Zwisler, C. Ellervik et al., Smoking is associated with increased risk of myeloproliferative neoplasms: A general population-based cohort study, Cancer Med, vol.7, pp.5796-5802, 2018.

N. A. Jayasuriya, A. D. Kjaergaard, K. M. Pedersen, A. L. Sørensen, M. Bak et al., Smoking, blood cells and myeloproliferative neoplasms: Meta-analysis and Mendelian randomization of 2·3 million people, Br. J. Haematol, vol.189, pp.323-334, 2020.

S. Nair, A. Branagan, J. Liu, C. S. Boddupalli, P. K. Mistry et al., Clonal Immunoglobulin against Lysolipids in the Origin of Myeloma, N. Engl. J. Med, vol.374, pp.555-561, 2016.

S. Nair, J. Sng, C. S. Boddupalli, A. Seckinger, M. Chesi et al., Antigen-mediated regulation in monoclonal gammopathies and myeloma, JCI Insight, vol.3, 2018.

S. Nair, N. Bar, M. L. Xu, M. Dhodapkar, and P. Mistry, Glucosylsphingosine but not Saposin C, is the target antigen in Gaucher disease-associated gammopathy, Mol. Genet. Metab, vol.129, pp.286-291, 2020.

A. Bosseboeuf, C. Seillier, N. Mennesson, S. Allain-maillet, M. Fourny et al., Analysis of the Targets and Glycosylation of Monoclonal IgAs From MGUS and Myeloma Patients. Front
URL : https://hal.archives-ouvertes.fr/inserm-02632340

A. Bosseboeuf, N. Mennesson, S. Allain-maillet, A. Tallet, E. Piver et al., Characteristics of MGUS and Multiple Myeloma According to the Target of Monoclonal Immunoglobulins, Glucosylsphingosine, or Epstein-Barr Virus EBNA-1. Cancers, vol.12, 1254.
URL : https://hal.archives-ouvertes.fr/inserm-02625782

R. Ayto and D. Hughes, Gaucher Disease and Myeloma, Crit. Rev. Oncog, vol.18, pp.247-268, 2013.

P. Mistry, T. H. Taddei, S. V. Dahl, and B. E. Rosenbloom, Gaucher disease and malignancy: A model for cancer pathogenesis in an inborn error of metabolism, Crit. Rev. Oncog, vol.18, pp.235-246, 2013.

S. Linari and G. Castaman, Hematological manifestations and complications of Gaucher disease, Expert Rev. Hematol, vol.9, pp.51-58, 2015.

M. K. Pandey, T. A. Burrow, R. Rani, L. J. Martin, D. Witte et al., Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease, Nature, vol.543, pp.108-112, 2017.

M. W?tek, E. Piktel, T. Wollny, B. Durna?, K. Fiedoruk et al., Defective Sphingolipids Metabolism and Tumor Associated Macrophages as the Possible Links Between Gaucher Disease and Blood Cancer Development, Int. J. Mol. Sci, vol.20, 2019.

E. Lippert, M. Boissinot, R. Kralovics, F. Girodon, I. Dobo et al., The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera, Blood, vol.108, pp.1865-1867, 2006.

A. Bosseboeuf, S. Allain, N. Mennesson, A. Tallet, C. Rossi et al., Pro-inflammatory state in MGUS and Myeloma is characterized by low sialylation of pathogen-specific and other monoclonal and polyclonal immunoglobulin G. Front

F. Passamonti, E. Rumi, D. Pietra, M. G. Della-porta, E. Boveri et al., Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders, Blood, vol.107, pp.3676-3682, 2006.

G. Rotunno, C. Mannarelli, P. Guglielmelli, A. Pacilli, A. Pancrazzi et al., on behalf of the Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia, Blood, vol.123, pp.1552-1555, 2014.

E. Lippert, F. Girodon, E. Hammond, S. Carillo, C. Richard et al., Concordance of Assays Designed for the Quantitation of JAK2 1849G>T (V617F): A Multi-Centre Study, Blood, vol.110, 2007.

J. V. Jovanovic, A. Ivey, A. M. Vannucchi, E. Lippert, E. Oppliger-leibundgut et al., Establishing Optimal Quantitative-Polymerase Chain Reaction Assays for Routine Diagnosis and Tracking Minimal Residual Disease, JAK2-V617F Associated Myeloid Neoplasms: A Joint European LeukemiaNet/MPN&MPNr-EuroNet (COST Action BM0902) Study. Leukemia, vol.27, pp.2032-2039, 2013.

O. Mansier, V. Prouzet-mauléon, G. Jégou, K. Barroso, D. P. Raymundo et al., The Expression of Myeloproliferative Neoplasm-Associated Calreticulin Variants Depends on the Functionality of ER-Associated Degradation, Cancers, vol.11, 1921.
URL : https://hal.archives-ouvertes.fr/hal-02403039

C. Duo, F. Gong, X. He, Y. Li, J. Wang et al., Soluble Calreticulin Induces Tumor Necrosis Factor-? (TNF-?) and Interleukin (IL)-6 Production by Macrophages through Mitogen-Activated Protein Kinase (MAPK) and NF?B Signaling Pathways, Int. J. Mol. Sci, vol.15, pp.2916-2928, 2014.

A. Tefferi, R. Vaidya, D. Caramazza, C. Finke, T. Lasho et al., Circulating Interleukin (IL)-8, IL-2R, IL-12, and IL-15 Levels Are Independently Prognostic in Primary Myelofibrosis: A Comprehensive Cytokine Profiling Study, J. Clin. Oncol, vol.29, pp.1356-1363, 2011.

R. Vaidya, N. Gangat, T. Jimma, C. M. Finke, T. L. Lasho et al., Plasma cytokines in polycythemia vera: Phenotypic correlates, prognostic relevance, and comparison with myelofibrosis, Am. J. Hematol, vol.87, pp.1003-1005, 2012.

M. Boissinot, C. Cleyrat, M. Vilaine, Y. Jacques, I. Corre et al., Anti-inflammatory cytokines hepatocyte growth factor and interleukin-11 are over-expressed in Polycythemia vera and contribute to the growth of clonal erythroblasts independently of JAK2V617F, Oncogene, vol.30, pp.990-1001, 2010.

F. Nooij, A. Van-der-sluijs-gelling, C. J. Der-zijde, M. .-v.;-van-tol, H. Haas et al., Immunoblotting techniques for the detection of low level homogeneous immunoglobulin components in serum, J. Immunol. Methods, vol.134, pp.273-281, 1990.

W. Braun and R. Abraham, Modified diffusion blotting for rapid and efficient protein transfer with PhastSystem, Electrophoresis, vol.10, pp.249-253, 1989.

M. Pettazzoni, R. Froissart, C. Pagan, M. T. Vanier, S. Ruet et al., LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: A novel tool for the screening of sphingolipidoses and Niemann-Pick type C disease, PLoS ONE, vol.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01835521

M. Xiao, Y. Wang, C. Tao, Z. Wang, J. Yang et al., Osteoblasts support megakaryopoiesis through production of interleukin-9, vol.129, pp.3196-3209, 2017.

Y. Feng, M. Yu, F. Zhu, S. Zhang, P. Ding et al., IL-9 Promotes the Development of Deep Venous Thrombosis by Facilitating Platelet Function, Thromb. Haemost, vol.118, pp.1885-1894, 2018.

P. Ding, S. Zhang, M. Yu, Y. Feng, Q. Long et al., IL-17A promotes the formation of deep vein thrombosis in a mouse model, Int. Immunopharmacol, vol.57, pp.132-138, 2018.

E. Pourcelot, C. Trocme, J. Mondet, S. Bailly, B. Toussaint et al., Cytokine profiles in polycythemia vera and essential thrombocythemia patients: Clinical implications, Exp. Hematol, vol.42, pp.360-368, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00949162

J. Mondet, K. Hussein, and P. Mossuz, Circulating Cytokine Levels as Markers of Inflammation in Philadelphia Negative Myeloproliferative Neoplasms: Diagnostic and Prognostic Interest, Mediat. Inflamm, vol.670580, 2015.

A. G. Fleischman, K. J. Aichberger, S. B. Luty, T. G. Bumm, C. L. Petersen et al., TNF? facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms, Blood, vol.118, pp.6392-6398, 2011.

M. Boissinot, M. Vilaine, and S. Hermouet, The hepatocyte growth factor (HGF)/c-MET axis: A neglected target in the treatment of chronic myeloproliferative neoplasms? Cancers, vol.6, pp.1631-1669, 2014.

S. Rai, N. Hansen, H. Hao-shen, S. Dirnhofer, N. R. Tata et al., IL-1? Secreted from Mutant Cells Carrying JAK2-V617Ffavors Early Clonal Expansion and Promotes MPN Disease Initiation and Progression, Blood, vol.2019

N. F. Øbro, J. Grinfeld, M. Belmonte, M. Irvine, M. S. Shepherd et al., Longitudinal Cytokine Profiling Identifies GRO-? and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia

D. Olcaydu, A. S. Harutyunyan, R. Jäger, T. Berg, B. Gisslinger et al., A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms, Nat. Genet, vol.41, pp.450-454, 2009.

S. Hermouet and M. Vilaine, The JAK2 46/1 haplotype: A marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica, vol.96, pp.1575-1579, 2011.

R. Jager, A. S. Harutyunyan, E. Rumi, D. Pietra, T. Berg et al., Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms, Am. J. Hematol, vol.89, pp.1107-1110, 2014.

W. Tapper, A. V. Jones, R. Kralovics, A. S. Harutyunyan, K. Zoi et al., Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms, Nat. Commun, vol.6, p.6691, 2015.

J. Saliba, C. Saint-martin, A. Di-stefano, G. Lenglet, C. Marty et al., Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies, Nat. Genet, vol.47, pp.1131-1140, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02881018

V. Barak, M. Acker, B. Nisman, I. Kalickman, A. Abrahamov et al., Cytokines in Gaucher's disease. Eur, Cytokine Netw, vol.10, pp.205-210, 1999.

C. A. Dinarello and J. W. Van-der-meer, Treating inflammation by blocking interleukin-1 in humans, Semin. Immunol, vol.25, pp.469-484, 2013.

L. Arranz, M. D. Arriero, and A. Villatoro, Interleukin-1? as emerging therapeutic target in hematological malignancies and potentially in their complications, Blood Rev, vol.31, pp.306-317, 2017.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI