M. Carbone, P. S. Adusumilli, H. R. Alexander, . Jr, P. Baas et al., Scientific clues for prevention, diagnosis, and therapy, CA Cancer J. Clin, vol.69, pp.402-429, 2019.

L. Mutti, T. Peikert, B. W. Robinson, A. Scherpereel, A. S. Tsao et al., Scientific advances and new frontiers in mesothelioma therapeutics, J. Thorac. Oncol, vol.13, pp.1269-1283, 2018.

V. Panou, M. Vyberg, U. M. Weinreich, C. Meristoudis, U. G. Falkmer et al., The established and future biomarkers of malignant pleural mesothelioma, Cancer Treat. Rev, vol.41, pp.486-495, 2015.

J. S. Nader, J. Abadie, S. Deshayes, A. Boissard, S. Blandin et al., Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma, Oncotarget, vol.9, pp.16311-16329, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01726393

T. Chernova, X. M. Sun, I. R. Powley, S. Galavotti, S. Grosso et al., Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease, Cell Death Differ, vol.23, pp.1152-1164, 2016.

P. Workman, E. O. Aboagye, F. Balkwill, A. Balmain, G. Bruder et al., Guidelines for the welfare and use of animals in cancer research, Br. J. Cancer, vol.102, pp.1555-1577, 2010.

P. Hughes, D. Marshall, Y. Reid, H. Parkes, and C. Gelber, The costs of using unauthenticated, over-passaged cell lines: How much more data do we need?, Biotechniques, vol.43, pp.577-578, 2007.

K. P. Olive and D. A. Tuveson, The use of targeted mouse models for preclinical testing of novel cancer therapeutics, Clin. Cancer Res, vol.12, pp.5277-5287, 2006.

R. S. Kerbel, Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved, Cancer Biol. Ther, vol.2, pp.134-139, 2003.

B. B. Aggarwal, D. Danda, S. Gupta, and P. Gehlot, Models for prevention and treatment of cancer: Problem vs. promises, Biochem. Pharmacol, vol.78, pp.1083-1094, 2009.

K. Shiozawa, R. Oyama, M. Takahashi, F. Kito, E. Hattori et al., Species-specific quantitative proteomics profiles of sarcoma patient-derived models closely reflect their primary tumors, Proteom. Clin. Appl, vol.13, 2019.

N. L. Henry and D. F. Hayes, Cancer biomarkers. Mol. Oncol, vol.6, pp.140-146, 2012.

D. L. Pouliquen, A. Boissard, O. Coqueret, and C. Guette, Biomarkers of tumor invasiveness in proteomics (Review), Int. J. Oncol, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02909126

J. Hmeljak, F. Sanchez-vega, K. A. Hoadley, J. Shih, C. Stewart et al., Integrative molecular characterization of malignant pleural mesothelioma, Cancer Discov, vol.8, pp.1548-1565, 2018.

D. Roulois, S. Deshayes, M. Guilly, J. S. Nader, C. Liddell et al., Characterization of preneoplastic and neoplastic rat mesothelial cell lines: The involvement of TETs, DNMTs, and 5-hydroxymethylcytosine, Oncotarget, vol.7, pp.34664-34687, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01306838

T. Blondy, S. M. Almeida, T. Briolay, J. Tabiasco, C. Meiller et al., Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma, J. Immunother. Cancer, vol.8, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02913733

T. Delaunay, C. Achard, N. Boisgerault, M. Grard, T. Petithomme et al., Frequent homozygous deletions of type I interferon genes in pleural mesothelioma confer sensitivity to oncolytic measles virus, J. Thor. Oncol, vol.15, pp.827-842, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02447160

J. S. Nader, J. Guillon, C. Petit, A. Boissard, F. Franconi et al.,

S. Xu, P. Yan, and Z. Shao, Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis, J. Cancer Res. Clin. Oncol, vol.136, pp.1545-1556, 2010.

N. Morofuji, H. Ojima, H. Onaya, T. Okusaka, K. Shimada et al., Macrophage-capping protein as a tissue biomarker for prediction of response to gemcitabine treatment and prognosis in cholangiocarcinoma, J. Proteom, vol.75, pp.1577-1589, 2012.

K. Kimura, H. Ojima, D. Kubota, M. Sakumoto, Y. Nakamura et al., Proteomic identification of the macrophage-capping protein as a protein contributing to the malignant features of hepatocellular carcinoma, J. Proteom, vol.78, pp.362-373, 2013.

J. Glaser, M. H. Neumann, Q. Mei, B. Betz, N. Seier et al., Macrophage-capping protein CapG is a putative oncogene involved in migration and invasiveness in ovarian carcinoma, Biomed. Res. Int, pp.1-8, 2014.

K. Davalieva, S. Kiprijanovska, C. Broussard, G. Petrusevska, and G. D. Efremov, Proteomic analysis of infiltrating ductal carcinoma tissues by coupled 2-D DIGE/MS/MS analysis, Mol. Biol, vol.46, pp.469-480, 2012.

S. Huang, Y. Chi, Y. Qin, Z. Wang, B. Xiu et al., CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription, Theranostics, vol.8, pp.2549-2564, 2018.

W. Xing and C. Zeng, An integrated transcriptomic and computational analysis for biomarker identification in human glioma, Tumor Biol, vol.37, pp.7185-7192, 2016.

Q. Fu, M. Shaya, S. Li, Y. Kugeluke, Y. Dilimulati et al., Analysis of clinical characteristics of macrophage-capping protein (CAPG) gene expressed in glioma based on TCGA data and clinical experiments, Oncol. Lett, vol.18, pp.1344-1350, 2019.

H. Ichikawa, T. Kanda, S. Kosugi, Y. Kawachi, H. Sasaki et al., Laser microdissection and two-dimensional difference gel electrophoresis reveal the role of a novel macrophage-capping protein in lymph node metastasis in gastric cancer, J. Proteome Res, vol.12, pp.3780-3791, 2013.

W. Wu, J. Chen, Q. Ding, S. Yang, J. Wang et al., Function of the macrophage-capping protein in colorectal carcinoma, Oncol. Lett, vol.14, pp.5549-5555, 2017.

J. A. Westbrook, D. A. Cairns, J. Peng, V. Speirs, A. M. Hanby et al., CAPG and GIPC1: Breast cancer biomarkers for bone metastasis development and treatment, J. Natl. Cancer Inst, vol.108, 2016.

S. Guaita-esteruelas, J. Guma, L. Masana, and J. Borràs, The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5, Mol. Cell. Endocrinol, vol.462, pp.107-118, 2018.

A. E. Thumser, J. B. Moore, and N. J. Plant, Fatty acid binding proteins: Tissue-specific functions in health and disease, Curr. Opin. Clin. Nutr. Metab. Care, vol.17, pp.124-129, 2014.

C. Mathis, I. Lascombe, F. Monnien, H. Bittard, F. Kleinclauss et al., Down-regulation of A-FABP predicts non-muscle invasive bladder cancer progression: Investigation with a long-term clinical follow-up, BMC Cancer, vol.18, p.1239, 2018.

C. Zhong, X. Zhang, N. Ma, E. Zhang, J. J. Li et al., FABP4 suppresses proliferation and invasion of hepatocellular carcinoma cells and predicts a poor prognosis for hepatocellular carcinoma, Cancer Med, vol.7, pp.2629-2640, 2018.

R. E. Hewitt, D. G. Powe, K. Morrell, E. Bailey, I. H. Leach et al., Laminin and collagen IV subunit distribution in normal and neoplastic tissues of colorectum and breast, Br. J. Cancer, vol.75, pp.221-229, 1997.

D. A. Mustafa, L. J. Dekker, C. Stingl, A. Kremer, M. Stoop et al., A proteome comparison between physiological angiogenesis and angiogenesis in glioblastoma, Mol. Cell. Proteom, vol.11, 2012.

E. Hohenester and P. D. Yurchenco, Laminins in basement membrane assembly, Cell Adhes. Migr, vol.7, pp.56-63, 2013.

F. Morra, F. Merolla, D. D'abbiero, G. Ilardi, S. Campione et al., Analysis of CCDC6 as a novel biomarker for the clinical use of PARP1 inhibitors in malignant pleural mesothelioma, Lung Cancer, vol.135, pp.56-65, 2019.

S. Gaetani, F. Monaco, F. Alessandrini, A. Tagliabracci, A. Sabbatini et al., Mechanism of miR-222 and miR-126 regulation and its role in asbestos-induced malignancy, Int. J. Biochem. Cell Biol, vol.121, 2020.

C. Rabouille, H. Kondo, R. Newman, N. Hui, P. Freemont et al., Syntaxin 5 is a common component of the NSF-and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro, Cell, vol.92, pp.603-610, 1998.

S. Kofuji, A. Hirayama, A. O. Eberhardt, R. Kawaguchi, Y. Sugiura et al., IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma, Nat. Cell Biol, vol.21, pp.1003-1014, 2019.

B. Peng, C. Guo, H. Guan, S. Liu, and M. Sun, Annexin A5 as a potential marker in tumors, Clin. Chim. Acta, vol.427, pp.42-48, 2014.

A. Bouter, R. Carmeille, C. Gounou, F. Bouvet, S. A. Degrelle et al., Review: Annexin-A5 and cell membrane repair, Placenta, vol.36, pp.43-49, 2015.

J. Tang, Z. Qin, P. Han, W. Wang, C. Yang et al., High annexin A5 expression promotes tumor progression and poor prognosis in renal cell carcinoma, Int. J. Oncol, vol.50, pp.1839-1847, 2017.

C. Sun, A. Zhao, S. Ji, X. Han, Z. Sun et al., Expression of annexin A5 in serum and tumor tissue of patients with colon cancer and its clinical significance, World J. Gastroenterol, vol.23, pp.7168-7173, 2017.

X. Sun, B. Wei, S. Liu, C. Guo, N. Wu et al., Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells with high lymph node metastasis potential preferentially via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) and E-cadherin, Biomed. Pharmacother, vol.84, pp.645-654, 2016.

X. Sun, S. Liu, J. Wang, B. Wei, C. Guo et al., Annexin A5 regulates hepatocarcinoma malignancy via CRKI/II-DOCK180-RAC1 integrin and MEK-ERK pathways, Cell Death Dis, vol.9, 2018.

S. Srinivasan, M. Guha, D. W. Dong, K. A. Whelan, G. Ruthel et al., Disruption of cytochrome c oxidase function induces Warburg effect and metabolic reprogramming, Oncogene, vol.35, pp.1585-1595, 2016.

C. M. Gleissner, .. Pyka, C. L. Heydenreuter, W. Gronauer, T. F. Atzberger et al., Neocarzilin A is a potent inhibitor of cancer cell motility targeting VAT-1 controlled pathways, ACS Cent. Sci, vol.5, pp.1170-1178, 2019.

M. Li, X. Yang, J. Zhang, H. Shi, Q. Hang et al., Effects of EHD2 interference on migration of esophageal squamous cell carcinoma, Med. Oncol, vol.30, 2013.

Y. Shi, X. Liu, Y. Sun, D. Wu, A. Qiu et al., Decreased expression and prognostic role of EHD2 in human breast carcinoma with E-cadherin, J. Mol. Histol, vol.46, pp.221-231, 2015.

C. E. Chua and B. L. Tang, The role of the small GTPase Rab31 in cancer, J. Cell. Mol. Med, vol.19, pp.1-10, 2015.

S. Apostolou, J. O. Klein, Y. Mitsuuchi, J. N. Shetler, P. I. Poulikakos et al., Growth inhibition and induction of apoptosis in mesothelioma cells by selenium and dependence on selenoprotein SEP15 genotype, Oncogene, vol.23, pp.5032-5040, 2014.

A. Rundlöf, A. P. Fernandes, M. Selenius, M. Babic, M. Shariatgorji et al., Quantification of alternative mRNA species and identification of thioredoxin reductase 1 isoforms in human tumor cells, Differentiation, vol.75, pp.123-132, 2007.

A. H. Rose, P. Bertino, F. W. Hoffmann, G. Gaudino, M. Carbone et al., Increasing dietary selenium elevates reducing capacity and ERK activation associated with accelerated progression of select mesotheliomas tumors, Am. J. Pathol, vol.184, pp.1041-1049, 2014.

M. Elhodaky and A. M. Diamond, Selenium-binding protein 1 in human health and disease, Int. J. Mol. Sci, vol.19, 2018.

A. M. Diamond, The subcellular location of selenoproteins and the impact on their function, Nutrients, vol.7, pp.3938-3948, 2015.

Y. Lee, S. Kim, R. Park, and Y. Kim, Hepatitis B virus-X downregulates expression of selenium binding protein 1. Viruses, vol.12, 2020.

Y. Wang, W. Zhu, X. Chen, G. Wei, G. Jiang et al., Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer, J. Transl. Med, vol.18, 2020.

C. Blanquart, F. Gueugnon, J. M. Nguyen, D. Roulois, L. Cellerin et al., Galectin-3, and SMRP combination improves the diagnosis of mesothelioma in pleural effusions, J. Thorac. Oncol, vol.7, pp.883-889, 2012.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI