M. Arnold, Global patterns and trends in colorectal cancer incidence and mortality, Gut, vol.66, pp.683-691, 2017.

H. Brenner, M. Kloor, and C. P. Pox, Colorectal cancer. Lancet, vol.383, issue.13, pp.61649-61658, 2014.

G. P. Gupta and J. Massague, Cancer metastasis: building a framework, Cell, vol.127, pp.679-695, 2006.

I. J. Fidler, Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture, Cancer Res, vol.50, pp.6130-6138, 1990.

A. J. Ridley, Cell migration: integrating signals from front to back, Science, vol.302, pp.1704-1709, 2003.

, Scientific RepoRtS |, vol.10, p.13350, 2020.

A. J. Ridley, Rho GTPases and cell migration, J. Cell Sci, vol.114, pp.2713-2722, 2001.

L. Wei, M. Surma, S. Shi, N. Lambert-cheatham, and J. Shi, Novel Insights into the Roles of Rho Kinase in Cancer, Archivum Immunologiae et thErapiae Experimentalis, vol.64, pp.259-278, 2016.

E. Sahai and C. J. Marshall, Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis, Nat Cell Biol, vol.5, pp.711-719, 2003.

T. Amano, K. Tanabe, T. Eto, S. Narumiya, and K. Mizuno, LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505, Biochem. J, vol.354, pp.149-159, 2001.

A. Bretscher, K. Edwards, and R. G. Fehon, ERM proteins and merlin: integrators at the cell cortex, Nat. Rev. Mol. Cell. Biol, vol.3, pp.586-599, 2002.

K. Kimura, Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase), Science, vol.273, p.245, 1996.

Y. Kureishi, Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation, J. Biol. Chem, vol.272, pp.12257-12260, 1997.

M. Amano, Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase, Science, vol.275, pp.1308-1311, 1997.

J. Lane, T. A. Martin, G. Watkins, R. E. Mansel, and W. G. Jiang, The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer, Int. J. Oncol, vol.33, pp.585-593, 2008.

J. Li, S. S. Bharadwaj, G. Guzman, R. Vishnubhotla, and S. C. Glover, ROCK I Has More Accurate Prognostic Value than MET in Predicting Patient Survival in Colorectal Cancer, Anticancer Res, vol.35, pp.3267-3273, 2015.

C. C. Wong, C. M. Wong, E. K. Tung, K. Man, and I. O. Ng, Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion, Hepatology, vol.49, pp.1583-1594, 2009.

P. Alhopuro, Candidate driver genes in microsatellite-unstable colorectal cancer, Int. J. Cancer, vol.130, pp.1558-1566, 2012.

I. Sari, Role of rho-kinase gene polymorphisms and protein expressions in colorectal cancer development, Pathobiol. J. Immunopathol. Mol. Cell. Biol, vol.80, p.1395, 2013.

D. R. Croft, Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis, Cancer Res, vol.64, pp.8994-9001, 2004.

N. Rath and M. F. Olson, Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy, EMBO Rep, vol.13, p.127, 2012.

R. Shahbazi, Targeting ROCK signaling in health, malignant and non-malignant diseases, Immunol. Lett, vol.219, p.12, 2019.

F. S. Guerra, R. G. Oliveira, C. A. Fraga, C. D. Mermelstein, and P. D. Fernandes, ROCK inhibition with Fasudil induces beta-catenin nuclear translocation and inhibits cell migration of MDA-MB 231 human breast cancer cells, Sci. Rep, vol.7, 2017.

N. Rath, ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth, EMBO Mol. Med, vol.9, p.6743, 2017.

M. De-toledo, C. Anguille, L. Roger, P. Roux, and G. Gadea, Cooperative anti-invasive effect of Cdc42/Rac1 activation and ROCK inhibition in SW620 colorectal cancer cells with elevated blebbing activity, PLoS ONE, vol.7, p.44, 2012.

F. Chang, ROCK inhibitor enhances the growth and migration of BRAF-mutant skin melanoma cells, Cancer Sci, vol.109, pp.3428-3437, 2018.

M. Nakashima, Inhibition of Rho-associated coiled-coil containing protein kinase enhances the activation of epidermal growth factor receptor in pancreatic cancer cells, Mol. Cancer, vol.10, p.79, 2011.

S. Adachi, Rho-kinase inhibitor upregulates migration by altering focal adhesion formation via the Akt pathway in colon cancer cells, Eur. J. Pharmacol, vol.650, pp.145-150, 2011.

M. Nakashima, Rho-kinase regulates negatively the epidermal growth factor-stimulated colon cancer cell proliferation, Int. J. Oncol, vol.36, pp.585-592, 2010.

R. Vishnubhotla, S. Bharadwaj, S. Sun, V. Metlushko, and S. C. Glover, Treatment with Y-27632, a ROCK Inhibitor, Increases the Proinvasive Nature of SW620 Cells on 3D Collagen Type 1 Matrix, Int. J. Cell Biol, 2012.

C. D. House, Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion, Cancer Res, vol.70, pp.6957-6967, 2010.

C. D. House, Voltage-gated Na+ channel activity increases colon cancer transcriptional activity and invasion via persistent MAPK signaling, Sci. Rep, vol.5, 2015.

D. T. Baptista-hon, Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function, Br. J. Anaesth, vol.113, issue.1, pp.39-48, 2014.

M. Cascione, Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells, Exp. Cell. Res, vol.360, pp.303-309, 2017.

N. Rath, Rho Kinase Inhibition by AT13148 Blocks Pancreatic Ductal Adenocarcinoma Invasion and Tumor Growth, Cancer Res, vol.78, pp.3321-3336, 2018.

K. Wolf and P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration, Trends Cell Biol, vol.21, pp.736-744, 2011.

L. Brisson, NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia, J. Cell Sci, vol.126, pp.4835-4842, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01907567

S. Roger, L. Gillet, J. Y. Le-guennec, and P. Besson, Voltage-gated sodium channels and cancer: is excitability their primary role?, Front Pharmacol, vol.6, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01762815

M. B. Djamgoz, S. P. Fraser, and W. J. Brackenbury, In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis, Cancers, 2019.

L. Brisson, Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H(+) efflux in caveolae. Oncogene, vol.30, pp.2070-2076, 2011.
URL : https://hal.archives-ouvertes.fr/tel-02862877

V. Driffort, Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization, Mol. Cancer, vol.13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01822217

M. Nelson, M. Yang, A. A. Dowle, J. R. Thomas, and W. J. Brackenbury, The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis, Mol. Cancer, vol.14, 2015.

M. Nelson, M. Yang, R. Millican-slater, W. J. Brackenbury, and . Nav1, 5 regulates breast tumor growth and metastatic dissemination in vivo, Oncotarget, vol.6, pp.32914-32929, 2015.

F. Gradek, Sodium channel Nav1.5 controls epithelial-to-mesenchymal transition and invasiveness in breast cancer cells through its regulation by the salt-inducible kinase-1, 2019.

L. Gillet, Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells, J. Biol. Chem, vol.284, pp.8680-8691, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01822230

, Scientific RepoRtS |, vol.10, p.13350, 2020.

W. J. Brackenbury, Voltage-gated sodium channels and metastatic disease, Channels (Austin), vol.6, pp.325-361, 2012.

S. Roger, Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines, Int. J. Biochem. Cell Biol, vol.39, pp.774-786, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141870

E. Hernandez-plata, Overexpression of NaV 1.6 channels is associated with the invasion capacity of human cervical cancer, Int. J. Cancer, vol.130, pp.2013-2023, 2012.

D. Diaz, Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer, J. Cell. Physiol, vol.210, pp.469-478, 2007.

M. E. Laniado, Expression and functional analysis of voltage-activated Na+ channels in human prostate cancer cell lines and their contribution to invasion in vitro, Am. J. Pathol, vol.150, pp.1213-1221, 1997.

O. Lopez-charcas, The invasiveness of human cervical cancer associated to the function of NaV1.6 channels is mediated by MMP-2 activity, 2018.

S. Roger, M. Potier, C. Vandier, P. Besson, and J. Y. Le-guennec, Voltage-gated sodium channels: new targets in cancer therapy?, Curr. Pharm. Des, vol.12, pp.3681-3695, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00141876

P. Besson, How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells, Biochim. Biophys. Acta, 1848.

M. Yang, Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer, Breast Cancer Res. Treat, vol.134, pp.603-615, 2012.

S. P. Fraser, Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis, Clin. Cancer Res, vol.11, pp.5381-5389, 2005.

S. Roger, P. Besson, and J. Y. Le-guennec, Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line, Biochim. Biophys. Acta, vol.1616, pp.107-111, 2003.

S. Dutta, Discovery and evaluation of nNav1.5 sodium channel blockers with potent cell invasion inhibitory activity in breast cancer cells, Bioorgan. Med. Chem, vol.26, pp.2428-2436, 2018.

I. Bugan, Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate, Prostate Cancer Prostatic Dis, 2019.

S. Roger, J. Y. Guennec, and P. Besson, Particular sensitivity to calcium channel blockers of the fast inward voltage-dependent sodium current involved in the invasive properties of a metastastic breast cancer cell line, Br. J. Pharmacol, vol.141, pp.610-615, 2004.

S. Jansen, R. Gosens, T. Wieland, and M. Schmidt, Paving the Rho in cancer metastasis: Rho GTPases and beyond, Pharmacol. Ther, vol.183, pp.1-21, 2018.

C. Dulong, The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells, Int. J. Oncol, vol.44, pp.539-547, 2014.

R. Vishnubhotla, ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging, Lab. Invest, vol.87, p.74, 2007.

F. Libanje, ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas, EMBO J, vol.38, p.9299, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02361455

T. Kita, Role of TGF-beta in proliferative vitreoretinal diseases and ROCK as a therapeutic target, Proc. Natl. Acad. Sci. USA 105, pp.17504-17509, 2008.

E. Bon, SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer, Nat. Commun, vol.7, 2016.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, pp.402-408, 2001.