T. C. Chua, Early-and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy, J. Clin. Oncol, vol.30, pp.2449-2456, 2012.

W. J. Van-driel, Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer, N. Engl. J. Med, vol.378, pp.230-240, 2018.

P. Bonnot, Cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for gastric cancer with peritoneal metastases (CYTO-CHIP study): a propensity score analysis, J. Clin. Oncol, p.1801688, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02420029

F. Quenet, A UNICANCER phase III trial of hyperthermic intra-peritoneal chemotherapy (HIPEC) for colorectal peritoneal carcinomatosis (PC): PRODIGE 7, JCO, vol.36, p.3503, 2018.

V. J. Verwaal, Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer, J. Clin. Oncol, vol.21, pp.3737-3743, 2003.

O. Glehen, F. Mohamed, and F. N. Gilly, Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia, Lancet Oncol, vol.5, pp.219-228, 2004.

D. Goéré, Is there a possibility of a cure in patients with colorectal peritoneal carcinomatosis amenable to complete cytoreductive surgery and intraperitoneal chemotherapy?, Ann. Surg, vol.257, pp.1065-1071, 2013.

G. Passot, What made hyperthermic intraperitoneal chemotherapy an effective curative treatment for peritoneal surface malignancy: A 25-year experience with 1,125 procedures, J. Surg. Oncol, vol.113, pp.796-803, 2016.

G. Passot, A perioperative clinical pathway can dramatically reduce failure-to-rescue rates after cytoreductive surgery for peritoneal carcinomatosis: a retrospective study of 666 consecutive cytoreductions, Ann. Surg, vol.265, pp.806-813, 2017.

A. Dohan, Preoperative assessment of peritoneal carcinomatosis of colorectal origin, J. Visc. Surg, vol.155, pp.293-303, 2018.

P. H. Sugarbaker, Concerning CT features used to select patients for treatment of peritoneal metastases, a pictoral essay, Int. J. Hyperth, vol.33, pp.497-504, 2017.

A. Laghi, Diagnostic performance of computed tomography and magnetic resonance imaging for detecting peritoneal metastases: systematic review and meta-analysis, Radiol. Med, vol.122, pp.1-15, 2017.

A. Dohan, Evaluation of the peritoneal carcinomatosis index with CT and MRI, Br. J. Surg, vol.104, pp.1244-1249, 2017.

M. R. Torkzad, Comparison between MRI and CT in prediction of peritoneal carcinomatosis index (PCI) in patients undergoing cytoreductive surgery in relation to the experience of the radiologist, J. Surg. Oncol, vol.111, pp.746-751, 2015.

I. Van't-sant, Diffusion-weighted MRI assessment of the peritoneal cancer index before cytoreductive surgery, Br. J. Surg, vol.105, pp.663-667, 2018.

E. De-bree, Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement, J. Surg. Oncol, vol.86, pp.64-73, 2004.

M. Bushati, The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: Results of a worldwide web-based survey of the Peritoneal Surface Oncology Group International (PSOGI), Eur. J. Surg. Oncol, vol.44, pp.1942-1948, 2018.

D. Marin, 64-Section multi-detector row CT in the preoperative diagnosis of peritoneal carcinomatosis: correlation with histopathological findings, Abdom Imaging, vol.35, pp.694-700, 2010.

J. Koh, T. D. Yan, D. Glenn, and D. L. Morris, Evaluation of preoperative computed tomography in estimating peritoneal cancer index in colorectal peritoneal carcinomatosis, Ann. Surg. Oncol, vol.16, pp.327-333, 2009.

I. Blevis, Introduction of Philips preclinical photon counting scanner and detector technology development, IEEE Med. Imaging Conf, 2015.

K. Taguchi, Energy-sensitive photon counting detector-based X-ray computed tomography, Radiol. Phys. Technol, vol.10, pp.8-22, 2017.

K. Taguchi and J. S. Iwanczyk, Vision 20/20: Single photon counting x-ray detectors in medical imaging, Med. Phys, vol.40, p.100901, 2016.

S. Si-mohamed, Review of an initial experience with an experimental spectral photon-counting computed tomography system, Nucl. Instrum. Methods Phys. Res. A, vol.873, pp.27-35, 2017.

J. P. Schlomka, Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography, Phys. Med. Biol, vol.53, pp.4031-4047, 2008.

Y. C. Dong, Effect of gold nanoparticle size on their properties as contrast agents for computed tomography, Sci. Rep, vol.9, p.14912, 2019.

, Scientific RepoRtS |, vol.10, p.13394, 2020.

N. Halttunen, Hybrid Nano-GdF3 contrast media allows pre-clinical in vivo element-specific K-edge imaging and quantification, Sci. Rep, vol.9, p.12090, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02362476

S. Si-mohamed, Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo, Nanoscale, vol.9, pp.18246-18257, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02076403

E. Cuccione, Multicolor spectral photon counting CT monitors and quantifies therapeutic cells and their encapsulating scaffold in a model of brain damage, Nanotheranostics, vol.4, pp.129-141, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02841219

S. Si-mohamed, Multicolour imaging with spectral photon-counting CT: a phantom study, Eur. Radiol. Exp, vol.2, p.34, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02076402

J. Dangelmaier, Experimental feasibility of spectral photon-counting computed tomography with two contrast agents for the detection of endoleaks following endovascular aortic repair, Eur. Radiol, vol.28, pp.3318-3325, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02076764

G. Bratke, Spectral photon-counting computed tomography for coronary stent imaging: evaluation of the potential clinical impact for the delineation of in-stent restenosis, Invest Radiol, vol.1, p.5, 2019.

I. Riederer, Liquid embolic agents in spectral X-ray photon-counting computed tomography using tantalum K-edge imaging, Sci. Rep, vol.9, p.5268, 2019.

S. Si-mohamed, Improved peritoneal cavity and abdominal organ imaging using a biphasic contrast agent protocol and spectral photon counting computed tomography K-edge imaging, Invest Radiol, vol.53, pp.629-639, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078939

D. P. Cormode, Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner, Sci. Rep, vol.7, p.4784, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02076404

R. Symons, Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: an in vivo study, Med. Phys, vol.44, pp.5120-5127, 2017.

S. Si-mohamed, Spectral Photon-Counting Computed Tomography (SPCCT): in-vivo single-acquisition multi-phase liver imaging with a dual contrast agent protocol, Sci. Rep, vol.9, p.8458, 2019.

M. Sigovan, Feasibility of improving vascular imaging in the presence of metallic stents using spectral photon counting CT and K-edge imaging, Sci. Rep, vol.9, p.19850, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02465759

M. S. Zedeck and S. S. Sternberg, A model system for studies of colon carcinogenesis: tumor induction by a single injection of methylazoxymethanol acetate, J. Natl. Cancer Inst, vol.53, pp.1419-1421, 1974.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

R. Steadman, C. Herrmann, and A. Livne, ChromAIX2: a large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype, Nucl. Instrum. Methods Phys. Res. Sect. A, vol.862, pp.18-24, 2017.

E. Roessl, Imaging Performance of a Photon-Counting Computed Tomography Prototype, 2015.

F. K. Kopp, Evaluation of a preclinical photon-counting CT prototype for pulmonary imaging, Sci. Rep, vol.8, p.17386, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078936

A. M. Cardozo, Metastatic pattern of CC531 colon carcinoma cells in the abdominal cavity: an experimental model of peritoneal carcinomatosis in rats, Eur. J. Surg. Oncol, vol.27, pp.359-363, 2001.

G. Los, M. Ruevekamp, N. Bosnie, P. W. De-graaf, and J. Gordon-mcvie, Intraperitoneal tumor growth and chemotherapy in a rat model, Eur. J. Cancer Clin. Oncol, vol.25, pp.1857-1866, 1989.

G. A. Coria-avila, A. M. Gavrila, S. Ménard, N. Ismail, and J. G. Pfaus, Cecum location in rats and the implications for intraperitoneal injections, Lab Anim. (NY), vol.36, pp.25-30, 2007.

S. Kim, ERG immunohistochemistry as an endothelial marker for assessing lymphovascular invasion, Korean J. Pathol, vol.47, pp.355-364, 2013.

P. Jacquet and P. H. Sugarbaker, Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis, Cancer Treat. Res, vol.82, pp.359-374, 1996.

F. Aarts, A comparison between radioimmunotherapy and hyperthermic intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis of colonic origin in rats, Ann. Surg. Oncol, vol.14, pp.3274-3282, 2007.

F. S. Koumpa, Colorectal peritoneal metastases: a systematic review of current and emerging trends in clinical and translational research, Gastroenterol. Res. Pract, p.30, 2019.

R. L. Harmon and P. H. Sugarbaker, Prognostic indicators in peritoneal carcinomatosis from gastrointestinal cancer, Int. Semin. Surg. Oncol, vol.2, p.3, 2005.

T. D. Yan, J. Sim, and D. L. Morris, Selection of patients with colorectal peritoneal carcinomatosis for cytoreductive surgery and perioperative intraperitoneal chemotherapy, Ann. Surg. Oncol, vol.14, pp.1807-1817, 2007.

J. Esquivel, Accuracy and clinical relevance of computed tomography scan interpretation of peritoneal cancer index in colorectal cancer peritoneal carcinomatosis: a multi-institutional study, J. Surg. Oncol, vol.102, pp.565-570, 2010.

T. R. Van-oudheusden, Peritoneal cancer patients not suitable for cytoreductive surgery and HIPEC during explorative surgery: risk factors, treatment options, and prognosis, Ann. Surg. Oncol, vol.22, pp.1236-1242, 2015.

S. A. Gerber, Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth, Am. J. Pathol, vol.169, pp.1739-1752, 2006.

W. Solass, Functional vascular anatomy of the peritoneum in health and disease, Pleura Peritoneum, vol.1, pp.145-158, 2016.

A. Giorgio and E. Pinto, Treatment of Peritoneal Surface Malignancies: State of the Art and Perspectives, 2015.

C. Mory, B. Sixou, S. Si-mohamed, L. Boussel, and S. Rit, Comparison of five one-step reconstruction algorithms for spectral CT, Phys. Med. Biol, vol.63, p.235001, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01760845

M. Rampurwala, Visualization and quantification of intraperitoneal tumors by in vivo computed tomography using negative contrast enhancement strategy in a mouse model of ovarian cancer, Transl. Oncol, vol.2, pp.96-106, 2009.

E. C. Tsilibary and S. L. Wissig, Lymphatic absorption from the peritoneal cavity: Regulation of patency of mesothelial stomata, Microvasc. Res, vol.25, pp.22-39, 1983.

C. Lasnon, Contrast-enhanced small-animal PET/CT in cancer research: strong improvement of diagnostic accuracy without significant alteration of quantitative accuracy and NEMA NU 4-2008 image quality parameters, EJNMMI Res, vol.3, p.5, 2013.

S. Zeamari, G. Rumping, B. Floot, S. Lyons, and F. A. Stewart, In vivo bioluminescence imaging of locally disseminated colon carcinoma in rats, Br. J. Cancer, vol.90, p.1259, 2004.

G. De-jong, FDG-PET, CT and MRI for the detection of experimental colorectal liver metastases: an exploratory study, J. Nucl. Med, vol.52, pp.312-312, 2011.

S. Kyriazi, D. J. Collins, V. A. Morgan, S. L. Giles, and N. M. Desouza, Diffusion-weighted imaging of peritoneal disease for noninvasive staging of advanced ovarian cancer, Radiographics, vol.30, pp.1269-1285, 2010.

H. J. Lee, Detecting peritoneal dissemination of ovarian cancer in mice by DWIBS, Magn. Reson. Imaging, vol.31, pp.227-234, 2013.

R. Audollent, Pitfalls and mimickers on (18)F-FDG-PET/CT in peritoneal carcinomatosis from colorectal cancer: An analysis from 37 patients, J. Visc. Surg, vol.152, pp.285-291, 2015.

J. Stollfuss, Non-invasive imaging of implanted peritoneal carcinomatosis in mice using PET and bioluminescence imaging, EJNMMI Res, vol.5, pp.1-8, 2015.

S. B. White, Characterization of CC-531 as a rat model of colorectal liver metastases, PLoS ONE, vol.11, p.155334, 2016.

J. Kim, Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents, Sci. Rep, vol.8, p.12119, 2018.

N. Murata, K. Murata, L. F. Gonzalez-cuyar, and K. R. Maravilla, Gadolinium tissue deposition in brain and bone, Magn. Reson Imaging, vol.34, pp.1359-1365, 2016.

, Scientific RepoRtS |, vol.10, p.13394, 2020.

C. Verry, Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol, BMJ Open, vol.9, p.23591, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02381987

F. Gremonprez, W. Willaert, and W. Ceelen, Animal models of colorectal peritoneal metastasis, Pleura Peritoneum, vol.1, pp.23-43, 2016.

G. Los, Optimisation of intraperitoneal cisplatin therapy with regional hyperthermia in rats, Eur. J. Cancer, vol.27, pp.472-477, 1991.