R. J. Gillies, P. E. Kinahan, and H. Hricak, Radiomics: images are more than pictures, they are data, Radiology, vol.278, pp.563-577, 2016.

P. Lambin, Radiomics: the bridge between medical imaging and personalized medicine, Nat. Rev. Clin. Oncol, vol.14, pp.749-762, 2017.

E. J. Limkin, Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology, Ann. Oncol, vol.28, pp.1191-1206, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01648559

R. Sun, A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study, Lancet Oncol, vol.19, pp.1180-1191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01958243

A. Simmons, P. S. Tofts, G. J. Barker, and S. R. Arridge, Sources of intensity nonuniformity in spin echo images at 1.5 T, Magn. Reson. Med, vol.32, pp.121-128, 1994.

J. Ford, N. Dogan, L. Young, and F. Yang, Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain, Contrast Media Mol. Imaging, p.1729071, 2018.

D. Molina, Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization, PLoS ONE, vol.12, p.178843, 2017.

J. Antunes, Radiomics analysis on FLT-PET/MRI for characterization of early treatment response in renal cell carcinoma: a proof-of-concept study, Transl. Oncol, vol.9, pp.155-162, 2016.

P. Chirra, Empirical evaluation of cross-site reproducibility in radiomic features for characterizing prostate MRI, Medical Imaging: Computer-Aided Diagnosis, 2018.

H. Moradmand, S. M. Aghamiri, and R. Ghaderi, Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma, J. Appl. Clin. Med. Phys, vol.21, pp.179-190, 2020.

M. Shafiq-ul-hassan, Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels, Med. Phys, vol.44, pp.1050-1062, 2017.

M. Bologna, V. Corino, and L. Mainardi, Technical note: virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain, Med. Phys, vol.46, pp.5116-5123, 2019.

S. Rathore, Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1, Sci. Rep, vol.8, pp.1-12, 2018.

P. O. Zinn, A Coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostinexpressing glioblastoma in patients and xenograft models, Clin. Cancer Res, vol.24, pp.6288-6299, 2018.

X. Su, Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain, Neuro-Oncology, 2019.

H. Liu, Treatment response prediction of rehabilitation program in children with cerebral palsy using radiomics strategy: protocol for a multicenter prospective cohort study in west China, Quant. Imaging Med. Surg, vol.9, pp.1402-1412, 2019.

M. Bologna, V. Corino, and L. Mainardi, Technical note: virtual phantom analyses for preprocessing evaluation and detection of a robust feature set for MRI-radiomics of the brain, Med. Phys, 2019.

S. S. Elsheikh, Multi-stage association analysis of glioblastoma gene expressions with texture and spatial patterns, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes Workshop, vol.11383, pp.239-250, 2019.

F. Tixier, H. Um, R. J. Young, and H. Veeraraghavan, Reliability of tumor segmentation in glioblastoma: impact on the robustness of MRI-radiomic features, Med. Phys, vol.46, pp.3582-3591, 2019.

R. Ortiz-ramón, Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images, Comput. Med. Imaging Graph, vol.74, pp.12-24, 2019.

A. Vamvakas, Imaging biomarker analysis of advanced multiparametric MRI for glioma grading, Phys. Med. PM Int. J. Devoted Appl. Phys. Med. Biol, vol.60, pp.188-198, 2019.

F. Tixier, Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone, Oncotarget, vol.10, pp.660-672, 2019.

S. Wu, J. Meng, Q. Yu, P. Li, and S. Fu, Radiomics-based machine learning methods for isocitrate dehydrogenase genotype prediction of diffuse gliomas, J. Cancer Res. Clin. Oncol, vol.145, pp.543-550, 2019.

M. Artzi, I. Bressler, and D. Ben-bashat, Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis, J. Magn. Reson. Imaging JMRI, vol.50, pp.519-528, 2019.

H. C. Kniep, Radiomics of brain MRI: utility in prediction of metastatic tumor type, Radiology, vol.290, pp.479-487, 2019.

P. Sanghani, B. T. Ang, N. K. King, and H. Ren, Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning, Surg. Oncol, vol.27, pp.709-714, 2018.

X. Liu, A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas, NeuroImage Clin, vol.20, pp.1070-1077, 2018.

L. Peng, Distinguishing true progression from radionecrosis after stereotactic radiation therapy for brain metastases with machine learning and radiomics, Int. J. Radiat. Oncol. Biol. Phys, vol.102, pp.1236-1243, 2018.

S. Bae, Radiomic MRI phenotyping of glioblastoma: improving survival prediction, Radiology, vol.289, pp.797-806, 2018.

W. Chen, B. Liu, S. Peng, J. Sun, and X. Qiao, Computer-aided grading of gliomas combining automatic segmentation and radiomics, Int. J. Biomed. Imaging, 2018.

L. G. Nyúl and J. K. Udupa, On standardizing the MR image intensity scale, Magn. Reson. Med, vol.42, pp.1072-1081, 1999.

M. Shah, Evaluating intensity normalization on MRIs of human brain with multiple sclerosis, Med. Image Anal, vol.15, pp.267-282, 2011.

R. T. Shinohara, Statistical normalization techniques for magnetic resonance imaging, NeuroImage Clin, vol.6, pp.9-19, 2014.

A. Chaddad, Radiomics in glioblastoma: current status and challenges facing clinical implementation, Front. Oncol, vol.9, pp.188-198, 2019.

, Scientific RepoRtS |, vol.10, p.12340, 2020.

R. T. Leijenaar, The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis, Sci. Rep, vol.5, p.11075, 2015.

M. E. Mayerhoefer, P. Szomolanyi, D. Jirak, A. Materka, and S. Trattnig, Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study, Med. Phys, vol.36, pp.1236-1243, 2009.

D. Jirák, M. Dezortová, and M. Hájek, Phantoms for texture analysis of MR images. Long-term and multi-center study, Med. Phys, vol.31, pp.616-622, 2004.

S. S. Yip and H. J. Aerts, Applications and limitations of radiomics, Phys. Med. Biol, vol.61, pp.150-166, 2016.

L. Duron, Gray-level discretization impacts reproducible MRI radiomics texture features, PLoS ONE, vol.14, p.213459, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02066691

H. Um, Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets, Phys. Med. Biol, vol.64, p.165011, 2019.

M. Schwier, Repeatability of multiparametric prostate MRI radiomics features, Sci. Rep, vol.9, pp.1-16, 2019.

F. Tixier, Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer, J. Nucl. Med, vol.52, pp.369-378, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00574272

A. Zwanenburg, S. Leger, M. Vallières, and S. Löck, Image biomarker standardisation initiative, 2016.

J. Goya-outi, Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma, Phys. Med. Biol, vol.63, p.105003, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01801219

A. Lecler, Combining multiple magnetic resonance imaging sequences provides independent reproducible radiomics features, Sci. Rep, vol.9, p.2068, 2019.

, Test-retest reliability and feature selection in physiological time series classification-ScienceDirect

X. Sun, Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions, Biomed. Eng. OnLine, vol.14, pp.1-7, 2015.

D. Palumbo, Interplay between bias field correction, intensity standardization, and noise filtering for T2-weighted MRI, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.2011, pp.5080-5083, 2011.

N. J. Tustison, N4ITK: improved N3 bias correction, IEEE Trans. Med. Imaging, vol.29, pp.1310-1320, 2010.

M. Vallières, C. R. Freeman, S. R. Skamene, and I. El-naqa, A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, Phys. Med. Biol, vol.60, pp.5471-5496, 2015.

W. E. Johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostat. Oxf. Engl, vol.8, pp.118-127, 2007.

F. Orlhac, A Postreconstruction harmonization method for multicenter radiomic studies in PET, J. Nucl. Med, vol.59, pp.1321-1328, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02401365

F. Orlhac, F. Frouin, C. Nioche, N. Ayache, and I. Buvat, Validation of a method to compensate multicenter effects affecting CT radiomics, Radiology, vol.291, pp.53-59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02401340

L. Tselikas, Imaging of gliomas at 1.5 and 3 Tesla-a comparative study, Neuro-Oncology, vol.17, pp.895-900, 2015.

S. Bakas, Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Sci. Data, vol.4, p.170117, 2017.

S. Bakas, Segmentation labels for the pre-operative scans of the TCGA-LGG collection, Cancer Imaging Arch, 2017.

K. Clark, The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository, J. Digit. Imaging, vol.26, pp.1045-1057, 2013.

, ANTs by stnava

S. M. Smith, Fast robust automated brain extraction, Hum. Brain Mapp, vol.17, pp.143-155, 2002.

T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, The SRI24 multichannel atlas of normal adult human brain structure, Hum. Brain Mapp, vol.31, pp.798-819, 2010.

J. C. Reinhold, B. E. Dewey, A. Carass, and J. L. Prince, Evaluating the impact of intensity normalization on MR image synthesis, 109493H (International Society for Optics and Photonics, vol.10949, 2019.

J. J. Griethuysen, Computational radiomics system to decode the radiographic phenotype, Cancer Res, vol.77, pp.104-107, 2017.

J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Theor, vol.37, pp.145-151, 2006.

X. Zhang, Radiomics strategy for molecular subtype stratification of lower-grade glioma: detecting IDH and TP53 mutations based on multimodal MRI, J. Magn. Reson. Imaging, vol.48, pp.916-926, 2018.

F. Pedregosa, Scikit-learn: machine learning in Python, J. Mach. Learn. Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, The balanced accuracy and its posterior distribution, 20th International Conference on Pattern Recognition, vol.10, p.12340, 2010.