V. P. Harjola, Clinical picture and risk prediction of short-term mortality in cardiogenic shock, Eur. J. Heart Fail, vol.17, pp.501-509, 2015.

T. Reffelmann, A novel minimal-invasive model of chronic myocardial infarction in swine, Coron. Artery Dis, vol.15, pp.7-12, 2004.

B. R. Weil, F. Konecny, G. Suzuki, V. Iyer, and J. M. Canty, Comparative hemodynamic effects of contemporary percutaneous mechanical circulatory support devices in a porcine model of acute myocardial infarction, JACC Cardiovasc. Interv, vol.9, pp.2292-2303, 2016.

B. Meyns, J. Stolinski, V. Leunens, E. Verbeken, and W. Flameng, Left ventricular support by catheter-mounted axial flow pump reduces infarct size, J. Am. Coll. Cardiol, vol.41, pp.1087-1095, 2003.

P. Ostadal, Novel porcine model of acute severe cardiogenic shock developed by upper-body hypoxia, Physiol. Res, vol.65, pp.711-715, 2016.

C. Simonsen, S. O. Magnusdottir, J. J. Andreasen, M. C. Rohde, and B. Kjaergaard, ECMO improves survival following cardiogenic shock due to carbon monoxide poisoning: an experimental porcine model. Scand, J. Trauma Resusc. Emerg. Med, vol.26, 2018.

O. K. Moller-helgestad, Impella CP or VA-ECMO in profound cardiogenic shock: left ventricular unloading and organ perfusion in a large animal model, EuroIntervention, vol.14, pp.1585-1592, 2019.

P. Ostadal, Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock, PLoS ONE, vol.13, 2018.

F. Vanhuyse, Moderate hypothermia improves cardiac and vascular function in a pig model of ischemic cardiogenic shock treated with veno-arterial ECMO, Shock, vol.47, pp.71-73, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01760254

N. K. Kapur, Mechanically unloading the left ventricle before coronary reperfusion reduces left ventricular wall stress and myocardial infarct size, Circulation, vol.128, p.9, 2013.

V. Crisostomo, Development of a closed chest model of chronic myocardial infarction in Swine: magnetic resonance imaging and pathological evaluation, 2013.

T. A. Stenberg, The acute phase of experimental cardiogenic shock is counteracted by microcirculatory and mitochondrial adaptations, PLoS ONE, vol.9, p.13, 2014.

M. A. Isorni, Comparative analysis of methods to induce myocardial infarction in a closed-chest rabbit model, Biomed. Res. Int, p.893051, 2015.

H. Ikram, An ovine model of acute myocardial infarction and chronic left ventricular dysfunction, Angiology, vol.48, p.803, 1997.

M. P. Maxwell, D. J. Hearse, and D. M. Yellon, Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction, Cardiovasc. Res, vol.21, pp.737-746, 1987.

E. Bertho and G. Gagnon, A comparative study in three dimension of the blood supply of the normal interventricular septum in human, canine, bovine, procine, ovine and equine, Dis. Chest, vol.46, pp.251-262, 1964.

K. Terp, The hemodynamic impact of diffuse myocardial ischemic lesions: an animal experimental model based on intracoronary microembolization, Heart Vessels, vol.13, pp.132-141, 1998.

W. Kim, A porcine model of ischemic heart failure produced by intracoronary injection of ethyl alcohol, Heart Vessels, vol.26, pp.342-348, 2011.

L. J. Markovitz, Large animal model of left ventricular aneurysm, Ann. Thorac. Surg, vol.48, pp.838-845, 1989.

R. W. Millner, J. M. Mann, I. Pearson, and J. R. Pepper, Experimental model of left ventricular failure, Ann. Thorac. Surg, vol.52, pp.78-83, 1991.

G. Heusch, R. Schulz, D. Baumgart, M. Haude, and R. Erbel, Coronary microembolization, Prog. Cardiovasc. Dis, vol.44, pp.217-230, 2001.

O. A. Smiseth, S. Lindal, O. D. Mjos, H. Vik-mo, and L. Jorgensen, Progression of myocardial damage following coronary microembolization in dogs, Acta Pathol. Microbiol. Immunol. Scand. A, vol.91, pp.115-124, 1983.

L. R. Bush and R. J. Shebuski, In vivo models of arterial thrombosis and thrombolysis, FASEB J, vol.4, p.55, 1990.

D. Garner, L. E. Ginzton, G. Jagels, and M. M. Laks, A new technique for producing myocardial infarction using coronary artery balloon occlusion, Cardiovasc. Res, vol.22, pp.42-46, 1988.

S. Mitsos, K. Katsanos, E. Dougeni, E. N. Koletsis, and D. Dougenis, A critical appraisal of open-and closed-chest models of experimental myocardial ischemia, Lab. Anim, vol.38, pp.167-177, 2009.

M. Gotberg, Mild hypothermia reduces acute mortality and improves hemodynamic outcome in a cardiogenic shock pig model, Resuscitation, vol.81, pp.1190-1196, 2010.

M. L. Lindsey, Guidelines for experimental models of myocardial ischemia and infarction, Am. J. Physiol. Heart Circ. Physiol, vol.314, pp.812-838, 2018.

P. F. Wouters, Left ventricular assistance using a catheter-mounted coaxial flow pump (Hemopump) in a canine model of regional myocardial ischaemia, Eur. Heart J, vol.14, pp.567-575, 1993.

A. Rasheed, N. M. Sayed, M. I. Zuhair, H. H. Obaid, A. R. Fatani et al., Effects of two newly synthesized analogues of lidocaine on rat arterial blood pressure and heart rate, Pharmacol. Res, vol.43, pp.313-319, 2001.

E. Freye, H. Schmidhammer, and L. Latasch, 14-methoxymetopon, a potent opioid, induces no respiratory depression, less sedation, and less bradycardia than sufentanil in the dog, Anesth. Analg, vol.90, pp.1359-1364, 2000.

M. T. Michelin, M. Cheucle-beaughard, and P. Duchene-marullaz, Comparative effects of amiodarone, bepridil and perhexiline on coronary venous flow and several cardiovascular parameters, Arch. Int. Pharmacodyn. Ther, vol.245, pp.236-248, 1980.

, Scientific RepoRtS |, vol.10, p.12417, 2020.

K. Varga and G. Kunos, Ethanol inhibition of baroreflex bradycardia: role of brainstem GABA receptors, Br. J. Pharmacol, vol.101, pp.773-775, 1990.

M. Feola, O. Haiderer, and J. H. Kennedy, Experimental graded "pump failure" of the left ventricle, J. Surg. Res, vol.11, pp.325-341, 1971.

N. L. Udesen, Impact of concomitant vasoactive treatment and mechanical left ventricular unloading in a porcine model of profound cardiogenic shock, Crit. Care, vol.24, p.95, 2020.

H. Inoue, B. F. Waller, and D. P. Zipes, Intracoronary ethyl alcohol or phenol injection ablates aconitine-induced ventricular tachycardia in dogs, J. Am. Coll. Cardiol, vol.10, pp.1342-1349, 1987.

B. J. Maron, Role of alcohol septal ablation in treatment of obstructive hypertrophic cardiomyopathy, Lancet, vol.355, issue.00, p.82005, 2000.

D. E. Haines, J. G. Whayne, and J. P. Dimarco, Intracoronary ethanol ablation in swine: effects of ethanol concentration on lesion formation and response to programmed ventricular stimulation, J. Cardiovasc. Electrophysiol, vol.5, pp.422-431, 1994.

T. M. Joudinaud, An experimental method for the percutaneous induction of a posterolateral infarct and functional ischemic mitral regurgitation, J. Heart Valve Dis, vol.14, pp.460-466, 2005.

B. A. Ellman, C. E. Green, E. Eigenbrodt, J. C. Garriott, and T. S. Curry, Renal infarction with absolute ethanol, Invest. Radiol, vol.15, pp.318-322, 1980.

K. A. Reimer, R. B. Jennings, and . The, wavefront phenomenon" of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow, Lab. Invest, vol.40, pp.633-644, 1979.

P. Weismuller, Chemical ablation by subendocardial injection of ethanol via catheter-preliminary results in the pig heart, Eur. Heart J, vol.12, pp.1234-1239, 1991.

R. B. Jennings, C. E. Murry, C. Steenbergen, and K. A. Reimer, Development of cell injury in sustained acute ischemia, Circulation, vol.82, pp.2-12, 1990.

H. Sakamoto, Effect of reperfusion on left ventricular regional remodeling strains after myocardial infarction, Ann. Thorac. Surg, vol.84, pp.1528-1536, 2007.

P. Anversa, Ischemic cardiomyopathy: myocyte cell loss, myocyte cellular hypertrophy, and myocyte cellular hyperplasia, Ann. N. Y. Acad. Sci, vol.752, pp.47-64, 1995.

N. G. Frangogiannis, Pathophysiology of myocardial infarction, Compr. Physiol, vol.5, pp.1841-1875, 2015.

R. Bolli, Why myocardial stunning is clinically important, Basic Res. Cardiol, vol.93, pp.169-172, 1998.

E. D. Aymong, K. Ramanathan, and C. E. Buller, Pathophysiology of cardiogenic shock complicating acute myocardial infarction, Med. Clin. N. Am, vol.91, pp.701-712, 2007.

P. J. Boor and E. S. Reynolds, Myocardial infarct size: clinicopathologic agreement and discordance, Hum. Pathol, vol.8, pp.685-695, 1977.

D. L. Page, J. B. Caulfield, J. A. Kastor, R. W. Desanctis, and C. A. Sanders, Myocardial changes associated with cardiogenic shock, N. Engl. J. Med, vol.285, p.301, 1971.

S. Kaul, The importance of defining left ventricular area at risk in vivo during acute myocardial infarction: an experimental evaluation with myocardial contrast two-dimensional echocardiography, Circulation, vol.75, pp.1249-1260, 1987.

J. S. Alpert and K. Thygesen, A new global definition of myocardial infarction for the 21st century, Pol. Arch. Med. Wewn, vol.117, pp.485-486, 2007.

S. M. Gharacholou, Implications and reasons for the lack of use of reperfusion therapy in patients with ST-segment elevation myocardial infarction: findings from the CRUSADE initiative, Am. Heart J, vol.159, pp.757-763, 2010.