M. Kozak, Initiation of translation in prokaryotes and eukaryotes, Gene, vol.234, pp.187-208, 1999.

B. Vanderperre, J. Lucier, C. Bissonnette, J. Motard, G. Tremblay et al., Direct detection of alternative open reading frames translation products in human significantly expands the proteome, PLoS One, vol.8, p.70698, 2013.

H. Mouilleron, V. Delcourt, and X. Roucou, Death of a dogma: eukaryotic mRNAs can code for more than one protein, Nucleic Acids Res, vol.44, pp.14-23, 2016.

J. L. Aspden, Y. C. Eyre-walker, R. J. Phillips, U. Amin, M. A. Mumtaz et al., Extensive translation of small open reading frames revealed by Poly-Ribo-Seq, Elife, vol.3, p.3528, 2014.

Z. Ji, R. Song, A. Regev, and K. Struhl, Many lncRNAs, 5 UTRs, and pseudogenes are translated and some are likely to express functional proteins, 2015.

S. A. Slavoff, A. J. Mitchell, A. G. Schwaid, M. N. Cabili, J. Ma et al., Peptidomic discovery of short open reading frame-encoded peptides in human cells, Nat. Chem. Biol, vol.9, pp.59-64, 2013.

A. Bateman, M. J. Martin, C. O'donovan, M. Magrane, E. Alpi et al., UniProt: the universal protein knowledgebase, Nucleic Acids Res, vol.45, pp.158-169, 2017.

N. A. O'leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad et al., Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res, vol.44, pp.733-745, 2016.

M. A. Brunet, M. Brunelle, J. F. Lucier, V. Delcourt, M. Levesque et al., OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes, Nucleic Acids Res, vol.47, pp.403-410, 2019.

V. Delcourt, A. Staskevicius, M. Salzet, I. Fournier, and X. Roucou, Small proteins encoded by unannotated ORFs are rising stars of the proteome, confirming shortcomings in genome annotations and current vision of an mRNA, Proteomics, vol.18, p.1700058, 2018.

Y. Hashimoto, T. Niikura, H. Tajima, T. Yasukawa, H. Sudo et al., A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta, Proc. Natl Acad. Sci. U.S.A, vol.98, pp.6336-6341, 2001.

V. Delcourt, J. Franck, E. Leblanc, F. Narducci, Y. M. Robin et al., Combined mass spectrometry imaging and top-down microproteomics reveals evidence of a hidden proteome in ovarian cancer, EBioMedicine, vol.21, pp.55-64, 2017.

V. Delcourt, J. Franck, J. Quanico, J. P. Gimeno, M. Wisztorski et al., Spatially-resolved top-down proteomics bridged to MALDI MS imaging reveals the molecular physiome of brain regions, Mol. Cell. Proteomics, vol.17, pp.357-372, 2018.

B. Razooky, B. Obermayer, J. O'may, and A. Tarakhovsky, Viral infection identifies micropeptides differentially regulated in smORF-containing lncRNAs, Genes, vol.8, p.206, 2017.

N. Fuku, H. Pareja-galeano, H. Zempo, R. Alis, Y. Arai et al., The mitochondrial-derived peptide MOTS-c: a player in exceptional longevity?, Aging Cell, vol.14, pp.921-923, 2015.

J. Couso and P. Patraquim, Classification and function of small open reading frames, Nat. Rev. Mol. Cell Biol, vol.18, pp.575-589, 2017.

A. Bensimon, A. J. Heck, and R. Aebersold, Mass spectrometry-based proteomics and network biology, Annu. Rev. Biochem, vol.81, pp.379-405, 2012.

W. H. Dunham, M. Mullin, and A. C. Gingras, Affinity-purification coupled to mass spectrometry: basic principles and strategies, Proteomics, vol.12, pp.1576-1590, 2012.

A. C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch et al., Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, vol.415, pp.141-147, 2002.

K. Maeda, M. Poletto, A. Chiapparino, and A. C. Gavin, A generic protocol for the purification and characterization of water-soluble complexes of affinity-tagged proteins and lipids, Nat. Protoc, vol.9, pp.2256-2266, 2014.

P. Li, J. Li, L. Wang, and L. J. Di, Proximity labeling of interacting proteins: application of BioID as a discovery tool, Proteomics, vol.17, p.1700002, 2017.

S. S. Lam, J. D. Martell, K. J. Kamer, T. J. Deerinck, M. H. Ellisman et al., Directed evolution of APEX2 for electron microscopy and proximity labeling, Nat. Methods, vol.12, pp.51-54, 2014.

K. J. Roux, D. I. Kim, M. Raida, and B. Burke, A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells, J. Cell Biol, vol.196, pp.801-810, 2012.

P. Li, Y. Meng, L. Wang, and L. J. Di, BioID: a proximity-dependent labeling approach in proteomics study, Methods Mol. Biol, vol.1871, pp.143-151, 2019.

K. J. Roux, D. I. Kim, B. Burke, and D. G. May, BioID: a screen for protein-protein interactions, Curr. Protoc. Protein Sci, vol.91, 2018.

S. Eyckerman, K. Titeca, E. Van-quickelberghe, E. Cloots, A. Verhee et al., Trapping mammalian protein complexes in viral particles, Nat. Commun, vol.7, p.11416, 2016.

C. Yu and L. Huang, Mass spectrometry: an emerging technology for interactomics and structural biology, Anal. Chem, vol.90, pp.144-165, 2018.

J. D. Chavez and J. E. Bruce, Chemical cross-linking with mass spectrometry: a tool for systems structural biology, Curr. Opin. Chem. Biol, vol.48, pp.8-18, 2019.

A. Kao, C. Chiu, D. Vellucci, Y. Yang, V. R. Patel et al., Development of a novel cross-linking strategy for fast and accurate identification of cross-linked peptides of protein complexes, Mol. Cell. Proteomics, vol.10, 2011.

M. Q. Mü, F. Dreiocker, C. H. Ihling, M. Schä, A. Sinz et al., Cleavable cross-linker for protein structure analysis: reliable identification of cross-linking products by tandem MS, Anal. Chem, vol.82, pp.6958-6968, 2010.

R. Fritzsche, C. H. Ihling, M. Götze, and A. Sinz, Optimizing the enrichment of cross-linked products for mass spectrometric protein analysis, Rapid Commun. Mass Spectrom, vol.26, pp.653-658, 2012.

M. Rey, M. Dupré, I. Lopez-neira, M. Duchateau, and J. Chamot-rooke, EXL-MS: an enhanced cross-linking mass spectrometry workflow to study protein complexes, Anal. Chem, vol.90, pp.10707-10714, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02331078

C. Nury, V. Redeker, S. Dautrey, A. Romieu, G. Van-der-rest et al., A novel bio-orthogonal cross-linker for improved protein/protein interaction analysis, Anal. Chem, vol.87, pp.1853-1860, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01144840

A. M. Burke, W. Kandur, E. J. Novitsky, R. M. Kaake, C. Yu et al., Synthesis of two new enrichable and MS-cleavable cross-linkers to define protein-protein interactions by mass spectrometry, Org. Biomol. Chem, vol.13, pp.5030-5037, 2015.

M. Riffle, D. Jaschob, A. Zelter, and T. N. Davis, ProXL (protein cross-linking database): a platform for analysis, visualization, and sharing of protein cross-linking mass spectrometry data, J. Proteome Res, vol.15, pp.2863-2870, 2016.

M. Götze, J. Pettelkau, S. Schaks, K. Bosse, C. H. Ihling et al., StavroX: a software for analyzing crosslinked products in protein interaction studies, J. Am. Soc. Mass Spectrom, vol.23, pp.76-87, 2012.

F. Müller, L. Fischer, Z. A. Chen, T. Auchynnikava, and J. Rappsilber, On the reproducibility of label-free quantitative cross-linking/mass spectrometry, J. Am. Soc. Mass Spectrom, vol.29, pp.405-412, 2018.

A. Leitner, T. Walzthoeni, and R. Aebersold, Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline, Nat. Protoc, vol.9, pp.120-137, 2014.

T. Walzthoeni, L. A. Joachimiak, G. Rosenberger, H. L. Röst, L. Malmström et al., XTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry, Nat. Methods, vol.12, pp.1185-1190, 2015.

C. W. Combe, L. Fischer, and J. Rappsilber, xiNET: cross-link network maps with residue resolution, Mol. Cell. Proteomics, vol.14, pp.1137-1147, 2015.

C. Iacobucci and A. Sinz, To be or not to be? Five guidelines to avoid misassignments in cross-linking/mass spectrometry, Anal. Chem, vol.89, pp.7832-7835, 2017.

X. Du, S. M. Chowdhury, N. P. Manes, S. Wu, M. U. Mayer et al., Xlink-Identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry, J. Proteome Res, vol.10, pp.923-931, 2011.

A. Leitner, M. Faini, F. Stengel, and R. Aebersold, Crosslinking and mass spectrometry: an integrated technology to understand the structure and function of molecular machines, Trends Biochem. Sci, vol.41, pp.20-32, 2016.

O. Klykov, B. Steigenberger, S. Pekta?, D. Fasci, A. J. Heck et al., Efficient and robust proteome-wide approaches for cross-linking mass spectrometry, Nat. Protoc, vol.13, pp.2964-2990, 2018.

A. Sinz, The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks, Expert Rev. Proteomics, vol.11, pp.733-743, 2014.

Z. A. Chen and J. Rappsilber, Quantitative cross-linking/mass spectrometry to elucidate structural changes in proteins and their complexes, Nat. Protoc, vol.14, pp.171-201, 2019.

R. M. Kaake, X. Wang, A. Burke, C. Yu, W. Kandur et al., A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells, Mol. Cell. Proteomics, vol.13, pp.3533-3543, 2014.

F. Liu, D. T. Rijkers, H. Post, and A. J. Heck, Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry, Nat. Methods, vol.12, pp.1179-1184, 2015.

T. Cardon, M. Salzet, J. Franck, and I. Fournier, Nuclei of HeLa cells interactomes unravel a network of ghost proteins involved in proteins translation, Biochim. Biophys. Acta: Gen. Subj, vol.1863, pp.1458-1470, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02941645

D. R. Pattabiraman, B. Bierie, K. I. Kober, P. Thiru, J. A. Krall et al., Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability, Science, p.3680, 2016.

F. Xing, Y. Luan, J. Cai, S. Wu, J. Mai et al., The anti-Warburg effect elicited by the cAMP-PGC1? pathway drives differentiation of glioblastoma cells into astrocytes, Cell Rep, vol.18, pp.468-481, 2017.

H. Wang, T. Sun, J. Hu, R. Zhang, Y. Rao et al., ) miR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways, J. Clin. Invest, vol.124, pp.4489-4502, 2014.

J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat. Methods, vol.6, pp.359-362, 2009.

G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini et al., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks, Bioinformatics, vol.25, pp.1091-1093, 2009.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

A. Roy, A. Kucukural, and Y. Zhang, I-TASSER: a unified platform for automated protein structure and function prediction, Nat. Protoc, vol.5, pp.725-738, 2010.

S. R. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho, ClusPro: a fully automated algorithm for protein-protein docking, Nucleic Acids Res, vol.32, pp.96-99, 2004.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera: a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

A. Raffo-romero, T. Arab, I. Al-amri, L. Marrec-croq, F. Van-camp et al., Medicinal leech CNS as a model for exosome studies in the crosstalk between microglia and neurons, Int. J. Mol. Sci, vol.19, p.4124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02183492

Y. Liu, H. Kim, J. Liang, W. Lu, B. Ouyang et al., The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal, J. Biol. Chem, vol.289, pp.4778-4786, 2014.

S. Saito, Y. C. Lin, Y. Nakamura, R. Eckner, K. Wuputra et al., Potential application of cell reprogramming techniques for cancer research, Cell. Mol. Life Sci, vol.76, pp.45-65, 2019.

J. B. Shabb, Physiological substrates of cAMP-dependent protein kinase, Chem. Rev, vol.101, pp.2381-2411, 2001.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-452, 2015.

T. Mitchison and M. Kirschner, Cytoskeletal dynamics and nerve growth, Neuron, vol.1, pp.761-772, 1988.

K. R. Boheler, Stem cell pluripotency: a cellular trait that depends on transcription factors, chromatin state and a checkpoint deficient cell cycle, J. Cell. Physiol, vol.221, pp.10-17, 2009.

S. Gagrica, S. Hauser, I. Kolfschoten, L. Osterloh, R. Agami et al., Inhibition of oncogenic transformation by mammalian Lin-9, a pRB-associated protein, EMBO J, vol.23, pp.4627-4638, 2004.

F. Liu and A. J. Heck, Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry, Curr. Opin. Struct. Biol, vol.35, pp.100-108, 2015.

S. Normark, S. Bergstrom, T. Edlund, T. Grundstrom, B. Jaurin et al., Overlapping genes, Annu. Rev. Genet, vol.17, pp.499-525, 2003.

R. F. Wang, M. R. Parkhurst, Y. Kawakami, P. F. Robbins, and S. A. Rosenberg, Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen, J. Exp. Med, vol.183, pp.1137-1140, 1996.

G. Menschaert, W. Van-criekinge, T. Notelaers, A. Koch, J. Crappé et al., Deep proteome coverage based on ribosome profiling aids mass spectrometry-based protein and peptide discovery and provides evidence of alternative translation products and near-cognate translation initiation events, Mol. Cell. Proteomics, vol.12, pp.1780-1790, 2013.

F. S. Wang, J. S. Wolenski, R. E. Cheney, M. S. Mooseker, and D. G. Jay, Function of myosin-V in filopodial extension of neuronal growth cones, Science, vol.273, pp.660-663, 1996.

J. S. Berg and R. E. Cheney, Myosin-X is an unconventional myosin that undergoes intrafilopodial motility, Nat. Cell Biol, vol.4, pp.246-250, 2002.

P. Simeone, M. Trerotola, J. Franck, T. Cardon, M. Marchisio et al., The multiverse nature of epithelial to mesenchymal transition, Semin. Cancer Biol, vol.58, pp.1-10, 2018.

S. Samandi, A. V. Roy, V. Delcourt, J. F. Lucier, J. Gagnon et al., Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins, p.27860, 2017.