W. Y. Chan, S. Kohsaka, and P. Rezaie, The origin and cell lineage of microglia-new concepts, Brain Res Rev, vol.53, issue.2, pp.344-354, 2007.

J. R. Conde and W. J. Streit, Microglia in the aging brain, J Neuropathol Exp Neurol, vol.65, issue.3, pp.199-203, 2006.

M. Prinz, D. Erny, and N. Hagemeyer, Ontogeny and homeostasis of CNS myeloid cells, Nat Immunol, vol.18, issue.4, pp.385-392, 2017.

M. L. Bennett, F. C. Bennett, and S. A. Liddelow, New tools for studying microglia in the mouse and human CNS, Proc Natl Acad Sci U S A, vol.113, issue.12, pp.1738-1746, 2016.

F. Ginhoux, M. Greter, and M. Leboeuf, Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, issue.6005, pp.841-845, 2010.

G. Hoeffel and F. Ginhoux, Ontogeny of tissue-resident macrophages, Front Immunol, vol.6, p.486, 2015.

T. L. Tay, N. Hagemeyer, and M. Prinz, The force awakens: insights into the origin and formation of microglia, Curr Opin Neurobiol, vol.39, pp.30-37, 2016.

I. Dalmau, J. M. Vela, and B. González, Dynamics of microglia in the developing rat brain, J Comp Neurol, vol.458, issue.2, pp.144-157, 2003.

S. Devaux, D. Cizkova, and K. Mallah, RhoA inhibitor treatment at acute phase of spinal cord injury may induce neurite outgrowth and synaptogenesis, Mol Cell Proteomics, vol.16, issue.8, pp.1394-1415, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01827747

S. Devaux, D. Cizkova, and J. Quanico, Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time-and segment-specific window for effective tissue repair, Mol Cell Proteomics, vol.15, issue.8, pp.2641-2670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850361

N. Hagemeyer, K. Hanft, and M. Akriditou, Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood, Acta Neuropathol, vol.134, issue.3, pp.441-458, 2017.

M. A. Michell-robinson, H. Touil, and L. M. Healy, Roles of microglia in brain development, tissue maintenance and repair, Brain, vol.138, pp.1138-1159, 2015.

S. Safaiyan, N. Kannaiyan, and N. Snaidero, Age-related myelin degradation burdens the clearance function of microglia during aging, Nat Neurosci, vol.19, issue.8, pp.995-998, 2016.

L. G. Sheffield and N. E. Berman, Microglial expression of MHC class II increases in normal aging of nonhuman primates, Neurobiol Aging, vol.19, issue.1, pp.47-55, 1998.

W. J. Streit, Microglia as neuroprotective, immunocompetent cells of the CNS, Glia, vol.40, issue.2, pp.133-139, 2002.

D. Varol, A. Mildner, and T. Blank, Dicer deficiency differentially impacts microglia of the developing and adult brain, Immunity, vol.46, issue.6, pp.1030-1044, 2017.

A. Wlodarczyk, I. R. Holtman, and M. Krueger, A novel microglial subset plays a key role in myelinogenesis in developing brain, Embo J, vol.36, issue.22, pp.3292-3308, 2017.

V. Stratoulias, J. L. Venero, and M. Tremblay, Microglial subtypes: diversity within the microglial community, Embo J, 2019.

J. L. Frost and D. P. Schafer, Microglia: architects of the developing nervous system, Trends Cell Biol, vol.26, issue.8, pp.587-597, 2016.

D. Keller, C. Erö, and H. Markram, Cell densities in the mouse brain: a systematic review, Front Neuroanat, vol.12, p.83, 2018.

L. J. Lawson, V. H. Perry, and P. Dri, Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain, Neuroscience, vol.39, issue.1, pp.151-170, 1990.

R. Kongsui, S. B. Beynon, and S. J. Johnson, Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat, J Neuroinflammation, vol.11, 2014.

M. Mittelbronn, K. Dietz, and H. J. Schluesener, Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude, Acta Neuropathol, vol.101, issue.3, pp.249-255, 2001.

M. Perez-pouchoulen, J. W. Vanryzin, and M. M. Mccarthy, Morphological and phagocytic profile of microglia in the developing rat cerebellum, ENeuro, vol.2, issue.4, pp.36-51, 2015.

F. Ginhoux and M. Guilliams, Tissue-resident macrophage ontogeny and homeostasis, Immunity, vol.44, issue.3, pp.439-449, 2016.

F. Ginhoux and M. Merad, Microglia arise from extra-embryonic yolk sac primitive progenitors, Med Sci, vol.27, issue.8-9, pp.719-724, 2011.

M. Greter and M. Merad, Regulation of microglia development and homeostasis, Glia, vol.61, issue.1, pp.121-127, 2013.

Y. Lavin, A. Mortha, and A. Rahman, Regulation of macrophage development and function in peripheral tissues, Nat Rev Immunol, vol.15, issue.12, pp.731-744, 2015.

Y. Lavin, D. Winter, and R. Blecher-gonen, Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment, Cell, vol.159, issue.6, pp.1312-1326, 2014.

R. Yamasaki, L. Haiyan, and O. Butovsky, Differential roles of microglia and monocytes in the inflamed central nervous system, J Exp Med, vol.211, issue.8, pp.1533-1549, 2014.

C. Schulz, E. G. Perdiguero, and L. Chorro, A lineage of myeloid cells independent of myb and hematopoietic stem cells, Science, vol.336, issue.6077, pp.86-90, 2012.

O. Butovsky, M. P. Jedrychowski, and C. S. Moore, Identification of a unique TGF-?-dependent molecular and functional signature in microglia, Nat Neurosci, vol.17, issue.1, pp.131-143, 2014.

D. Brites and A. Fernandes, Neuroinflammation and depression: microglia activation, extracellular microvesicles and MicroRNA dysregulation, Front Cell Neurosci, vol.9, p.476, 2015.

R. C. Paolicelli, G. Bergamini, and L. Rajendran, Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience, 2018.

C. Bavisotto, F. S. Celeste, and A. M. Gammazza, Extracellular vesicle-mediated cell ? cell communication in the nervous system: focus on neurological diseases, Int J Mol Sci, vol.20, issue.2, 2019.

D. M. Norden and J. P. Godbout, Review: microglia of the aged brain: primed to be activated and resistant to regulation, Neuropathol Appl Neurobiol, vol.39, issue.1, pp.19-34, 2013.

V. H. Perry and C. Holmes, Microglial priming in neurodegenerative disease, Nat Rev Neurol, vol.10, issue.4, pp.217-224, 2014.

O. Matcovitch-natan, D. R. Winter, and A. Giladi, Microglia development follows a stepwise program to regulate brain homeostasis, Science, vol.353, p.8670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438174

M. S. Thion, D. Low, and A. Silvin, Microbiome influences prenatal and adult microglia in a sex-specific manner, Cell, vol.172, issue.3, pp.500-516, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02118049

A. H. De-haas, H. Boddeke, and K. Biber, Region-specific expression of immunoregulatory proteins on microglia in the healthy CNS, Glia, vol.56, issue.8, pp.888-894, 2008.

J. Scheffel, R. T. Van-rossum, and D. , Toll-like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia, Glia, vol.60, issue.12, pp.1930-1943, 2012.

A. Silvin and F. Ginhoux, Microglia heterogeneity along a spatio-temporal axis: more questions than answers, Glia, vol.66, issue.10, pp.2045-2057, 2018.

A. Murgoci, D. Cizkova, and P. Majerova, Brain-cortex microglia-derived exosomes: nanoparticles for glioma therapy, Chemphyschem, vol.19, pp.1205-1214, 2018.

C. Castillo, L. R. Oancea, A. Stüllein, and C. , Evaluation of consistency in spheroid invasion assays, Sci Rep, vol.6, 2016.

M. Duhamel, M. Rose, and F. Rodet, Paclitaxel treatment and PC1/3 knockdown in macrophages is a promising anti-glioma strategy as revealed by proteomics and cytotoxicity studies, Mol Cell Proteomics, 2018.

C. Castillo, L. R. Oancea, A. Stüllein, and C. , A novel computer-assisted approach to evaluate multicellular tumor spheroid invasion assay, Sci Rep, vol.6, 2016.

J. R. Wi?niewski, A. Zougman, and N. Nagaraj, Universal sample preparation method for proteome analysis, Nat Methods, vol.6, issue.5, pp.359-362, 2009.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, issue.12, pp.1367-1372, 2008.

J. Cox, N. Neuhauser, and A. Michalski, Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, vol.10, issue.4, pp.1794-1805, 2011.

, Reorganizing the protein space at the universal protein resource (UniProt), Nucleic Acids Res, vol.40, pp.71-75, 2012.

D. Cizkova, M. Cizek, and M. Nagyova, Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting, J Neurosci Methods, vol.184, issue.1, pp.88-94, 2009.

S. Sarkar, E. Malovic, and B. Plante, Rapid and refined CD11b magnetic isolation of primary microglia with enhanced purity and versatility, J Visualized Exp, vol.122, issue.13, 2017.

N. Lago, B. Pannunzio, and J. Amo-aparicio, CD200 modulates spinal cord injury neuroinflammation and outcome through CD200R1, Brain Behav Immun, vol.73, pp.416-426, 2018.

R. Rogall, A. Pikhovych, and A. Bach, P 4 bioluminescence imaging visualizes osteopontin-induced neurogenesis and neuroblasts migration in the mouse brain after stroke, Clin Neurophysiol, vol.128, issue.10, pp.327-328, 2017.

J. A. Cañas, B. Sastre, and J. M. Rodrigo-muñoz, Exosomes: a new approach to asthma pathology, Clin Chim Acta, vol.495, pp.139-147, 2019.

J. Kowal, G. Arras, and M. Colombo, Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes, Proc Nat Acad Sci, vol.113, issue.8, pp.968-977, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02450678

C. Théry, K. W. Witwer, and E. Aikawa, Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines, J Extracell Vesicles, vol.7, issue.1, 2018.

F. Ginhoux and M. Prinz, Origin of microglia: current concepts and past controversies, Cold Spring Harb Perspect Biol, vol.7, issue.8, p.20537, 2015.

Q. Li and B. A. Barres, Microglia and macrophages in brain homeostasis and disease, Nat Rev Immunol, vol.18, issue.4, pp.225-242, 2018.

C. J. Bohlen, F. C. Bennett, and A. F. Tucker, Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures, Neuron, vol.94, issue.4, pp.759-773, 2017.

K. Askew, K. Li, and A. Olmos-alonso, Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain, Cell Rep, vol.18, issue.2, pp.391-405, 2017.

C. Böttcher, S. Schlickeiser, and M. Sneeboer, Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry, Nat Neurosci, vol.22, issue.1, pp.78-90, 2019.

A. E. Frakes, L. Ferraiuolo, and A. M. Haidet-phillips, Microglia induce motor neuron death via the classical NF-?B pathway in amyotrophic lateral sclerosis, Neuron, vol.81, issue.5, pp.1009-1023, 2014.

M. Nikodemova, A. L. Small, and S. Smith, Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats, Neurobiol Dis, vol.69, pp.43-53, 2014.

F. Ginhoux, S. Lim, and G. Hoeffel, Origin and differentiation of microglia, Front Cell Neurosci, vol.7, p.45, 2013.

D. K. Jeppesen, A. M. Fenix, and J. L. Franklin, Reassessment of exosome composition, Cell, vol.177, issue.2, pp.428-445, 2019.

K. Grabert, T. Michoel, and M. H. Karavolos, Microglial brain region-dependent diversity and selective regional sensitivities to aging, Nat Neurosci, vol.19, issue.3, pp.504-516, 2016.

L. C. Edman, H. Mira, and E. Arenas, The Beta-Chemokines CCL2 and CCL7 are two novel differentiation factors for midbrain dopaminergic precursors and neurons, Exp Cell Res, vol.314, issue.10, pp.2123-2130, 2008.

E. V. Jones and D. S. Bouvier, Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease, Neural Plast, p.321209, 2014.

A. R. Malik, E. Liszewska, and J. Jaworski, Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system, Front Cell Neurosci, vol.9, p.237, 2015.

D. Cizkova, L. Marrec-croq, F. Franck, and J. , Alterations of protein composition along the rostro-caudal axis after spinal cord injury: proteomic, in vitro and in vivo analyses, Front Cell Neurosci, vol.8, p.105, 2014.

D. M. Norden, T. D. Faw, and D. B. Mckim, Bone marrow-derived monocytes drive the inflammatory microenvironment in local and remote regions after thoracic spinal cord injury, J Neurotrauma, 2018.

. October and . Doi,

S. Huang, X. Ge, and J. Yu, Increased MiR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons, Faseb J, vol.32, issue.1, pp.512-528, 2017.

D. Gayle, S. E. Ilyin, and M. E. Miele, Modulation of TNF-alpha MRNA production in rat C6 glioma cells by TNF-alpha, IL-1beta, IL-6, and IFN-alpha: in vitro analysis of cytokine-cytokine interactions, Brain Res Bull, vol.47, issue.3, pp.231-235, 1998.

M. Wang, T. Wang, and S. Liu, The expression of matrix metalloproteinase-2 and ?9 in human gliomas of different pathological grades, Brain Tumor Pathol, vol.20, issue.2, pp.65-72, 2003.

P. E. Framson and E. H. Sage, SPARC and tumor growth: where the seed meets the soil?, J Cell Biochem, vol.92, issue.4, pp.679-690, 2004.