, BP) and galectins in tumor progression and metastasis, Glycoconjugate J, vol.19, pp.551-556

C. Han, R. Alkhater, T. Froukh, A. G. Minassian, M. Galati et al., , 2016.

, Am. J. Hum. Genet, vol.99, pp.1359-1367

C. Harding, J. Heuser, and P. Stahl, , 1983.

C. R. Harrell, B. Simovic-markovic, C. Fellabaum, A. Arsenijevic, V. Djonov et al., , 2018.

H. Jing, X. He, and J. Zheng, Exosomes and regenerative medicine: state of the art and perspectives, Translational Res. J. Lab. Clin. Med, vol.196, pp.1-16, 2018.

R. M. Johnstone, Revisiting the road to the discovery of exosomes, Blood Cell Mol. Dis, vol.34, pp.214-219, 2005.

R. M. Johnstone, Exosomes biological significance: a concise review, Blood Cell Mol, 2006.

. Dis, , vol.36, pp.315-321

R. M. Johnstone, A. Bianchini, and K. Teng,

, Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions, Blood, vol.74, pp.1844-1851

R. Kojima, D. Bojar, G. Rizzi, G. C. Hamri, M. D. El-baba et al., Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinsons disease treatment, Nat. Commun, vol.9, p.1305, 2018.

R. E. Lane, D. Korbie, M. Trau, and M. M. Hill, Purification protocols for extracellular vesicles, Methods Mol. Biol, vol.1660, pp.111-130, 2017.

S. Mathivanan, H. Ji, and R. J. Simpson, Exosomes: extracellular organelles important in intercellular communication, J. Proteomics, vol.73, pp.1907-1920, 2010.

F. Momen-heravi, Isolation of extracellular vesicles by ultracentrifugation, Methods Mol. Biol, vol.1660, pp.25-32, 2017.

A. Murgoci, D. Cizkova, P. Majerova, E. Petrovova, L. Medvecky et al., Brain-cortex microglia-derived exosomes: nanoparticles for Glioma therapy, 2018.

B. Pan and R. M. Johnstone, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor, Cell, vol.33, pp.967-978, 1983.

B. T. Pan, K. Teng, C. Wu, M. Adam, and R. M. Johnstone, Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes, J. Cell Biol, vol.101, pp.942-948, 1985.

C. Rajagopal and K. B. Harikumar, The origin and functions of exosomes in cancer, Front. Oncol, vol.8, p.66, 2018.

P. Reclusa, K. Teng, C. Wu, M. Adam, and R. M. Johnstone, Exosomes as diagnostic and predictive biomarkers in lung cancer, 2017.

, J. Thorac. Dis, vol.9, pp.1373-1382

C. F. Ruivo, B. Adem, M. Silva, and S. A. Melo, The biology of cancer exosomes: insights and new perspectives, Cancer Res, vol.77, pp.6480-6488, 2017.

N. Saito, K. Aoki, N. Hirai, S. Fujita, J. Iwama et al., Effect of Notch expression in glioma stem cells on therapeutic response to chemo-radiotherapy in recurrent glioblastoma, Brain Tumor Pathol, vol.32, pp.176-183, 2015.

. Bonnet, Subnetwork Enrichment Analysis" (SNEA) algorithm was selected to extract statistically significant altered biological and functional pathways pertaining to each identified set of protein hits. SNEA utilizes Fisher's statistical test used to determine if there are non-randomized associations between two categorical variables organized by specific relationships. SNEA starts by creating a central "seed" from all relevant entities in the database, and retrieving associated entities based on their relationship with the "seed" (i.e. binding partners, expression targets, protein modification targets, regulation). The algorithm compares the sub-network distribution to the background distribution using one-sided Mann, Datasets including MaxQuant files and annotated MS/MS datasets, were uploaded to ProteomeXchange Consortium via the PRIDE database, and was assigned the dataset identifier PXD016944 (Username: reviewer95445@ebi.ac.uk, Password: wHS6rIOg), vol.1, 2009.

A. Bonnet, Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares, BMC proceedings, vol.3, p.11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00730039

M. A. Brunet, OpenProt: a more comprehensive guide to explore eukaryotic coding potential and proteomes, Nucleic Acids Research, vol.47, issue.D1, pp.403-410, 2019.

J. Cox, Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ, Molecular & Cellular Proteomics, vol.13, issue.9, pp.2513-2526, 2014.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.26, issue.12, pp.1367-1372, 2008.

M. Duhamel, Paclitaxel treatment and PC1/3 knockdown in macrophages is a promising anti-glioma strategy as revealed by proteomics and cytotoxicity studies, UniProt Consortium, vol.40, pp.71-75, 2012.

A. Yuryev, E. Kotelnikova, and N. Daraselia, Ariadne's ChemEffect and Pathway Studio knowledge base, Expert Opinion on Drug Discovery, vol.4, issue.12, pp.1307-1318, 2009.