S. Anstis, Picturing peripheral acuity, Perception, vol.27, pp.817-825, 1998.

V. Helmholtz and H. , Handbuch der Physiologischen Optik, vol.9, 1867.

A. Herwig and W. X. Schneider, Predicting object features across saccades: Evidence from object recognition and visual search, J. Exp. Psychol. Gen, vol.143, pp.1903-1922, 2014.

M. Otten, Y. Pinto, C. L. Paffen, A. K. Seth, and R. Kanai, The uniformity illusion: Central stimuli can determine peripheral perception, Psychol. Sci, vol.28, pp.56-68, 2017.

M. Toscani, K. R. Gegenfurtner, and M. Valsecchi, Foveal to peripheral extrapolation of brightness within objects, J. Vis, vol.17, pp.14-14, 2017.

M. Valsecchi, J. Koenderink, A. Van-doorn, and K. R. Gegenfurtner, Prediction shapes peripheral appearance, J. Visi, vol.18, pp.21-21, 2018.

M. Valsecchi and K. R. Gegenfurtner, Dynamic re-calibration of perceived size in fovea and periphery through predictable size changes, Curr. Biol, vol.26, pp.59-63, 2016.

J. Baldwin, A. Burleigh, R. Pepperell, and N. Ruta, The perceived size and shape of objects in peripheral vision. i-Perception, vol.7, p.2041669516661900, 2016.

L. R. Newsome, Visual angle and apparent size of objects in peripheral vision, Percept. Psychophys, vol.12, pp.300-304, 1972.

C. Moutsiana, Cortical idiosyncrasies predict the perception of object size, Nat. Commun, vol.7, p.12110, 2016.

H. Ebbinghaus, Grundzüge der Psychologie, vol.1, 1902.

E. B. Titchener, Experimental Psychology: A Manual of, Laboratory Practice, vol.2, 1905.

H. Knol, R. Huys, J. Sarrazin, and V. K. Jirsa, Quantifying the Ebbinghaus figure effect: Target size, context size, and target-context distance determine the presence and direction of the illusion, Front. Psychol, vol.6, p.1679, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02344907

B. Roberts, M. G. Harris, and T. A. Yates, The roles of inducer size and distance in the ebbinghaus illusion (titchener circles), Perception, vol.34, pp.847-856, 2005.

,

A. Bosco, M. Lappe, and P. Fattori, Adaptation of saccades and perceived size after trans-saccadic changes of object size, J. Neurosci, vol.35, pp.14448-14456, 2015.

D. Whitney and D. M. Levi, Visual crowding: A fundamental limit on conscious perception and object recognition, Trends Cogn. Sci, vol.15, pp.160-168, 2011.

T. Jaeger, Ebbinghaus illusions: Size contrast or contour interaction phenomena?, Percept. Psychophys, vol.24, pp.337-342, 1978.

D. Todorovi? and L. Jovanovi?, Is the Ebbinghaus illusion a size contrast illusion?, Acta Physiol. (Oxf), vol.185, pp.180-187, 2018.

R. F. Hess, S. C. Dakin, N. Kapoor, and M. Tewfik, Contour interaction in fovea and periphery, J. Opt. Soc. Am. A, vol.17, pp.1516-1524, 2000.

J. A. Greenwood, P. J. Bex, and S. C. Dakin, Crowding changes appearance, Curr. Biol, vol.20, pp.496-501, 2010.

R. E. Mruczek, C. D. Blair, L. Strother, G. P. Caplovitz, G. Arthur et al., Size contrast and assimilation in the Delboeuf and Ebbinghaus illusions, The Oxford Compendium of Visual Illusions, pp.262-268, 2017.

H. E. Bedell and C. A. Johnson, The perceived size of targets in the peripheral and central visual fields, Ophthalmic Physiol. Opt, vol.4, pp.123-131, 1984.

Z. Hussain, B. S. Webb, A. T. Astle, and P. V. Mcgraw, Perceptual learning reduces crowding in amblyopia and in the normal periphery, J. Neurosci, vol.32, pp.474-480, 2012.

G. J. Sun, S. T. Chung, and B. S. Tjan, Ideal observer analysis of crowding and the reduction of crowding through learning, J. Vis, vol.10, pp.16-16, 2010.

G. L. Shulman, Attentional modulation of size contrast, Q. J. Exp. Psychol. Sect. A, vol.45, pp.529-546, 1992.

A. Herwig, K. Weiß, and W. X. Schneider, Feature prediction across eye movements is location specific and based on retinotopic coordinates, J. Vis, vol.18, pp.13-13, 2018.

M. Valsecchi, C. R. Cassanello, A. Herwig, M. Rolfs, and K. R. Gegenfurtner, A comparison of the temporal and spatial properties of trans-saccadic perceptual recalibration and saccadic adaptation, J. Vis, vol.20, pp.1-15, 2020.

B. E. Mckenzie, H. E. Tootell, and R. H. Day, Development of visual size constancy during the 1st year of human infancy, Dev. Psychol, vol.16, pp.163-174, 1980.

A. Slater, A. Mattock, and E. Brown, Size constancy at birth: Newborn infants' responses to retinal and real size, J. Exp. Child Psychol, vol.49, pp.314-322, 1990.

A. Chopin and P. Mamassian, Predictive properties of visual adaptation, Curr. Biol, vol.20, p.20, 2012.

D. Yon, F. P. De-lange, and C. Press, The predictive brain as a stubborn scientist, Trends Cogn. Sci, vol.23, pp.6-8, 2019.

R. Zhang, O. Kwon, and D. Tadin, Illusory movement of stationary stimuli in the visual periphery: Evidence for a strong centrifugal prior in motion processing, J. Neurosci, vol.33, pp.4415-4423, 2013.

E. T. Davis, D. Yager, and B. J. Jones, Comparison of perceived spatial frequency between the fovea and the periphery, J. Opt. Soc. Am. A Opt. Image Sci, vol.4, pp.1606-1611, 1987.

D. Brainard, The psychophysics toolbox, Spat. Vis, 1997.

F. W. Cornelissen, E. M. Peters, and J. Palmer, The eyelink toolbox: Eye tracking with MATLAB and the psychophysics toolbox, Behav. Res. Methods Instrum. Comput, vol.34, pp.613-617, 2002.

M. Kleiner, What's new in psychtoolbox-3, Perception, vol.36, p.20, 2007.

D. G. Pelli, The VideoToolbox software for visual psychophysics: Transforming numbers into movies, Spat. Vis, vol.10, pp.437-442, 1997.

, JASP Team. JASP, 2018.

J. Van-doorn, The JASP guidelines for conducting and reporting a Bayesian analysis