R. Sankowski, S. Mader, and S. I. Valdés-ferrer, Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration, Front Cell Neurosci, vol.9, p.28, 2015.

M. S. Thion, F. Ginhoux, and S. Garel, Microglia and early brain development: an intimate journey. Science (-80), vol.362, pp.185-194, 2018.

M. Prinz, D. Erny, and N. Hagemeyer, Ontogeny and homeostasis of CNS myeloid cells, Nat Immunol, vol.18, issue.4, pp.385-92, 2017.

R. M. Ransohoff, E. Khoury, and J. , Microglia in health and disease, Cold Spring Harb Perspect Biol, vol.8, issue.1, p.20560, 2015.

A. Sierra, F. Castro, J. R. De, and R. S. The, Big-Bang" for modern glial biology : translation and comments on P?o del R Hortega 1919 series of papers on microglia, Glia, vol.64, pp.1801-1841, 2016.

F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, issue.6005, pp.841-846, 2010.

R. E. Coggeshall and D. W. Fawcett, The fine structure of the central nervous system of the Leech Hirudo medicinalis, J Neurophysiol, vol.27, issue.2, pp.229-89, 1964.

E. J. Elliot and K. J. Muller, Synapses between neurons regenerate accurately after destruction of ensheathing glial cells in the leech, Science, vol.215, issue.4537, pp.1260-1262, 1982.

K. J. Muller and S. A. Scott, Correct axonal regeneration after target cell removal in the central nervous system of the leech, Science, vol.206, issue.4414, pp.87-96, 1979.

K. J. Muller and S. A. Scott, Removal of the synaptic target permits terminal sprouting of a mature intact axon, Nature, vol.283, issue.5742, pp.89-90, 1980.

E. Mcglade-mcculloh, A. M. Morrissey, F. Norona, and K. J. Muller, Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system, Proc Natl Acad Sci, vol.86, issue.3, pp.1093-1100, 1989.

V. J. Morgese, E. J. Elliott, and K. J. Muller, Microglial movement to sites of nerve lesion in the leech CNS, Brain Res, vol.272, issue.1, pp.166-70, 1983.

D. Sieger and F. Peri, Animal models for studying microglia: The first, the popular, and the new, Glia, vol.61, issue.1, pp.3-9, 2013.

M. Tahtouh, F. Croq, J. Vizioli, P. E. Sautiere, C. Van-camp et al., Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord, Mol Immunol, vol.46, issue.4, pp.523-554, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00350105

M. Tahtouh, A. Garçon-bocquet, F. Croq, J. Vizioli, P. Sautière et al., Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis, J Neuroinflammation, vol.9, p.37, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650047

F. Croq, J. Vizioli, M. Tuzova, M. Tahtouh, P. Sautiere et al., A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis, Glia, vol.58, issue.14, pp.1649-62, 2010.

K. Arafah, D. Croix, J. Vizioli, A. Desmons, I. Fournier et al., Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech, Glia, vol.61, pp.636-685, 2013.

L. Marrec-croq, F. Bocquet-garcon, A. Vizioli, J. Vancamp, C. Drago et al., Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury, Med Sci Monit, vol.20, pp.644-53, 2014.

A. Raffo-romero, T. Arab, C. Van-camp, Q. Lemaire, M. Wisztorski et al., ALK4/5-dependent TGF-? signaling contributes to the crosstalk between neurons and microglia following axonal lesion, Sci Rep, vol.9, issue.1, p.6896, 2019.

D. Debanne and S. Rama, Astrocytes shape axonal signaling, Sci Signal, vol.4, issue.162, p.11, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01771777

Y. Yamazaki, Y. Hozumi, K. Kaneko, T. Sugihara, S. Fujii et al., Modulatory effects of oligodendrocytes on the conduction velocity of action potentials along axons in the alveus of the rat hippocampal CA1 region, Neuron Glia Biol, vol.3, issue.4, pp.325-359, 2007.

G. Van-niel, D. Angelo, G. Raposo, and G. , Shedding light on the cell biology of extracellular vesicles, Nat Rev Mol Cell Biol, vol.19, issue.4, pp.213-241, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02359760

V. Budnik, C. Ruiz-cañada, and F. Wendler, Extracellular vesicles round off communication in the nervous system, Nat Rev Neurosci, vol.17, pp.160-72, 2016.

T. Arab, A. Raffo-romero, V. Camp, C. Lemaire, Q. et al., Proteomic characterisation of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep TM density gradient isolation, J Extracell Vesicles, vol.8, issue.1, p.1603048, 2019.

A. Raffo-romero, T. Arab, A. Is, L. Marrec-croq, F. et al., Medicinal Leech CNS as a model for exosome studies in the crosstalk between microglia and neurons, Int J Mol Sci, vol.19, issue.12, p.4124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02183492

S. N. Blandford, D. A. Galloway, and C. S. Moore, The roles of extracellular vesicle microRNAs in the central nervous system, Glia, vol.66, pp.2267-78, 2018.

P. Arasu, B. Wightman, and G. Ruvkun, Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28, Genes Dev, vol.5, pp.1825-1858, 1991.

, Bartel DP. Metazoan MicroRNAs. Cell, vol.173, issue.1, pp.20-51, 2018.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat Cell Biol, vol.11, issue.3, pp.228-262, 2009.

R. W. Carthew and E. J. Sontheimer, Origins and Mechanisms of miRNAs and siRNAs, Cell, vol.136, issue.4, pp.642-55, 2009.

A. Kozomara, S. Griffiths-jones, and . Mirbase, annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, pp.68-73, 2014.

I. Prada, M. Gabrielli, E. Turola, A. Iorio, D. '-arrigo et al., Glia-toneuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations, Acta Neuropathol, vol.135, issue.4, pp.529-50, 2018.

C. Théry, K. W. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson et al., Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, J Extracell Vesicles, vol.7, issue.1, p.1535750, 2018.

S. Mathivanan and R. J. Simpson, ExoCarta: A compendium of exosomal proteins and RNA, Proteomics, vol.9, issue.21, pp.4997-5000, 2009.

W. Liu and X. Wang, Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data, Genome Biol, vol.20, issue.1, p.18, 2019.

V. Agarwal, G. W. Bell, J. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs, Elife, vol.4, p.5005, 2015.

E. M. Ngu, C. L. Sahley, and K. J. Muller, Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS, J Comp Neurol, vol.503, pp.101-110, 2007.

D. Schikorski, V. Cuvillier-hot, C. Boidin-wichlacz, C. Slomianny, M. Salzet et al., Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model, J Immunol, vol.183, issue.11, pp.7119-288, 2009.

H. Kettenmann, U. Hanisch, M. Noda, and A. Verkhratsky, Physiology of Microglia, Physiol Rev, vol.91, issue.2, pp.461-553, 2011.

X. Castillo, Z. Melo, A. Varela-echavarría, E. Tamariz, R. M. Aroña et al., Vasoinhibin Suppresses the Neurotrophic Effects of VEGF and NGF in Newborn Rat Primary Sensory Neurons, Neuroendocrinology, vol.106, issue.3, pp.221-254, 2018.

L. Olbrich, D. Foehring, P. Happel, B. Brand-saberi, and C. Theiss, Fast rearrangement of the neuronal growth cone's actin cytoskeleton following VEGF stimulation, Histochem Cell Biol, vol.139, issue.3, pp.431-476, 2013.

P. Carmeliet, C. R. De-almodovar, and R. A. De-carmen, VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration, Cell Mol Life Sci, vol.70, issue.10, pp.1763-78, 2013.

R. Klein, V. Nanduri, S. A. Jing, F. Lamballe, P. Tapley et al., The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3, Cell, vol.66, issue.2, pp.395-403, 1991.

L. S. Nguyen, J. Fregeac, C. Bole-feysot, N. Cagnard, A. Iyer et al., Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders, Mol Autism, vol.9, issue.1, p.38, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02087850

J. A. Slota and S. A. Booth, MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications, Non-Coding RNA, vol.5, issue.2, p.35, 2019.

Q. Yang, Q. Shi, and J. Fu, Applications of cerebrospinal miRNA in the detection and treatment of acute CNS injury, Front Lab Med, vol.2, issue.2, pp.83-91, 2018.

J. Huang, Z. Ju, Q. Li, Q. Hou, C. Wang et al., Solexa sequencing of novel and differentially expressed microRNAs in testicular and ovarian tissues in Holstein cattle, Int J Biol Sci, vol.7, issue.7, pp.1016-1042, 2011.

N. Lawless, P. Vegh, C. O'farrelly, and D. J. Lynn, The Role of microRNAs in Bovine Infection and Immunity, Front Immunol, vol.5, p.611, 2014.

L. Fang, P. Sørensen, G. Sahana, F. Panitz, G. Su et al., MicroRNAguided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle, Sci Rep, vol.8, issue.1, p.9345, 2018.

E. A. Glazov, P. A. Cottee, W. C. Barris, R. J. Moore, B. P. Dalrymple et al., A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach, Genome Res, vol.18, issue.6, pp.957-64, 2008.

H. Zhu, R. Xia, B. Zhao, Y. An, C. D. Dardick et al., Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs, BMC Plant Biol, vol.12, issue.1, p.149, 2012.

E. Bertolini, W. Verelst, D. S. Horner, L. Gianfranceschi, V. Piccolo et al., Addressing the Role of microRNAs in Reprogramming Leaf Growth during Drought Stress in Brachypodium distachyon, Mol Plant, vol.6, issue.2, pp.423-466, 2013.

Q. Zhu, A. Spriggs, L. Matthew, L. Fan, G. Kennedy et al., A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains, Genome Res, vol.18, issue.9, pp.1456-65, 2008.

X. Chen, H. Wang, W. Yu, F. Chen, G. Wang et al., IDH1 associated with neuronal apoptosis in adult rats brain following intracerebral hemorrhage, Cell Mol Neurobiol, vol.37, issue.5, pp.831-872, 2017.

A. Gortat, M. Sancho, L. Mondragón, À. Messeguer, E. Pérez-payá et al., Apaf1 inhibition promotes cell recovery from apoptosis, Protein Cell, vol.6, issue.11, pp.833-876, 2015.

Q. Chen, J. Xu, L. Li, H. Li, S. Mao et al., MicroRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis, Cell Death Dis, vol.5, issue.3, p.1132, 2014.

J. R. Crittenden, D. E. Dunn, F. I. Merali, B. Woodman, M. Yim et al., CalDAG-GEFI down-regulation in the striatum as a neuroprotective change in Huntington's disease, Hum Mol Genet, vol.19, issue.9, pp.1756-65, 2010.

W. Qian, Y. Hong, M. Zhu, L. Zhou, H. Li et al., Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice, Brain Res, vol.1665, pp.36-49, 2017.

H. Peng, L. Wang, Q. Su, K. Yi, J. Du et al., MiR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB, Biomed Pharmacother, vol.109, pp.208-224, 2019.

J. Hu, H. Qian, Y. Xue, and X. Fu, PTB/nPTB: master regulators of neuronal fate in mammals, Biophys Rep, vol.4, issue.4, pp.204-218, 2018.

J. Hye, J. Ah, M. Hee, J. Yoon, and W. Jong, Biomaterials In situ single step detection of exosome microRNA using molecular beacon, Biomaterials, vol.54, pp.116-141, 2015.

J. M. Graham, OptiPrep density gradient solutions for mammalian organelles, Scientific World J, vol.2, pp.1440-1443, 2002.

C. Théry, S. Amigorena, G. Raposo, and A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr Protoc cell Biol, vol.3, issue.1, pp.3-22, 2006.

E. Afgan, D. Baker, B. Batut, M. Van-den-beek, D. Bouvier et al., The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Res, vol.46, issue.W1, pp.537-544544, 2018.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method, Methods, vol.25, issue.4, pp.402-410, 2001.

J. R. Wi?niewski, P. Ostasiewicz, and M. Mann, High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers, J Proteome Res, vol.10, issue.7, pp.3040-3049, 2011.

M. Pool, J. Thiemann, A. Bar-or, and A. E. Fournier, NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth, J Neurosci Methods, vol.168, issue.1, pp.134-143, 2008.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations