|. Reports, , vol.9, p.1090, 2019.

D. Mozaffarian, Heart disease and stroke statistics-2015 update: a report from the, American Heart Association. Circulation, vol.131, pp.29-322, 2015.

K. A. Hossmann, Viability thresholds and the penumbra of focal ischemia, Ann Neurol, vol.36, pp.557-565, 1994.

J. A. Hankin, MALDI mass spectrometric imaging of lipids in rat brain injury models, J Am Soc Mass Spectrom, vol.22, pp.1014-1021, 2011.

C. Janfelt, Visualization by mass spectrometry of 2-dimensional changes in rat brain lipids, including N-acylphosphatidylethanolamines, during neonatal brain ischemia, FASEB J, vol.26, pp.2667-2673, 2012.

S. Koizumi, Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain, Neuroscience, vol.168, pp.219-225, 2010.

S. R. Shanta, Global changes in phospholipids identified by MALDI MS in rats with focal cerebral ischemia, J Lipid Res, vol.53, pp.1823-1831, 2012.

S. N. Whitehead, Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery, PLoS One, vol.6, p.20808, 2011.

R. J. Goodwin, S. L. Iverson, and P. E. Andren, The significance of ambient-temperature on pharmaceutical and endogenous compound abundance and distribution in tissues sections when analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging, Rapid Commun Mass Spectrom, vol.26, pp.494-498, 2012.

Y. Sugiura, K. Honda, M. Kajimura, and M. Suematsu, Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice, Proteomics, vol.14, pp.829-838, 2014.

N. Braidy, Metal and complementary molecular bioimaging in Alzheimer's disease, Front Aging Neurosci, vol.6, p.138, 2014.

L. Carlred, Probing amyloid-beta pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry, J Neurochem, vol.138, pp.469-478, 2016.

J. Hanrieder, A. Ljungdahl, and M. Andersson, MALDI imaging mass spectrometry of neuropeptides in Parkinson's disease, J Vis Exp, p.60, 2012.

J. H. Hong, Global changes of phospholipids identified by MALDI imaging mass spectrometry in a mouse model of Alzheimer's disease, J Lipid Res, vol.57, pp.36-45, 2016.

H. Y. Wang, H. W. Wu, P. J. Tsai, and C. B. Liu, MALDI-mass spectrometry imaging of desalted rat brain sections reveals ischemiamediated changes of lipids, Anal Bioanal Chem, vol.404, pp.113-124, 2012.

I. Lanekoff, S. L. Stevens, M. P. Stenzel-poore, and J. Laskin, Matrix effects in biological mass spectrometry imaging: identification and compensation, Analyst, vol.139, pp.3528-3532, 2014.

A. M. Van-den-maagdenberg, A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression, Neuron, vol.41, pp.701-710, 2004.

S. B. Milne, P. T. Ivanova, D. Decamp, R. C. Hsueh, and H. A. Brown, A targeted mass spectrometric analysis of phosphatidylinositol phosphate species, J Lipid Res, vol.46, pp.1796-802, 2005.

F. F. Hsu and J. Turka, Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study, J Am Soc Mass Spectrom, vol.11, pp.986-99, 2000.

G. Paradies, G. Petrosillo, V. Paradies, and F. M. Ruggiero, Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease, Cell Calcium, vol.45, pp.643-650, 2009.

Y. Sugiura, S. Shimma, Y. Konishi, M. K. Yamada, and M. Setou, Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus, PLoS One, vol.3, p.3232, 2008.

K. Eikermann-haerter, Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations, Circulation, vol.125, pp.335-345, 2012.

U. Dirnagl, C. Iadecola, and M. A. Moskowitz, Pathobiology of ischaemic stroke: an integrated view, Trends Neurosci, vol.22, pp.391-397, 1999.

K. Abe, K. Kogure, H. Yamamoto, M. Imazawa, and K. Miyamoto, Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex, J Neurochem, vol.48, pp.503-509, 1987.

S. F. Huang and G. Y. Sun, Cerebral ischemia induced quantitative changes in rat brain membrane lipids involved in phosphoinositide metabolism, Neurochem Int, vol.9, pp.185-190, 1986.

M. Ikeda, S. Yoshida, R. Busto, M. Santiso, and M. D. Ginsberg, Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia, J Neurochem, vol.47, pp.123-132, 1986.

T. N. Lin, T. H. Liu, J. Xu, C. Y. Hsu, and G. Y. Sun, Brain polyphosphoinositide metabolism during focal ischemia in rat cortex, Stroke, vol.22, pp.495-498, 1991.

G. Y. Sun, H. M. Huang, and R. Chandrasekhar, Turnover of inositol phosphates in brain during ischemia-induced breakdown of polyphosphoinositides, Neurochem Int, vol.13, pp.63-68, 1988.

G. Y. Sun, Inositol trisphosphate, polyphosphoinositide turnover, and high-energy metabolites in focal cerebral ischemia and reperfusion, Stroke, vol.26, pp.1893-1900, 1995.

A. A. Amoscato, Imaging mass spectrometry of diversified cardiolipin molecular species in the brain, Anal Chem, vol.86, pp.6587-6595, 2014.

A. Roux, Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury, J Neurosci Methods, vol.272, pp.19-32, 2016.

L. J. Sparvero, Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury, J Neurochem, vol.139, pp.659-675, 2016.

J. S. Yoon, Spatiotemporal protein atlas of cell death-related molecules in the rat MCAO stroke model, Exp Neurobiol, vol.27, pp.287-298, 2018.

R. M. Adibhatla, J. F. Hatcher, and R. J. Dempsey, Lipids and lipidomics in brain injury and diseases, AAPS J, vol.8, pp.314-321, 2006.

R. K. Yu, Y. T. Tsai, T. Ariga, and M. Yanagisawa, Structures, biosynthesis, and functions of gangliosides -an overview, J Oleo Sci, vol.60, pp.537-544, 2011.

S. E. Karpiak, Y. S. Li, and S. P. Mahadik, Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: protection of membrane function, Stroke, vol.18, pp.184-187, 1987.

K. Tanaka, Effect of the ganglioside GM1, on cerebral metabolism, microcirculation, recovery kinetics of ECoG and histology, during the recovery period following focal ischemia in cats, Stroke, vol.17, pp.1170-1178, 1986.

E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, Reversible middle cerebral artery occlusion without craniectomy in rats, Stroke, vol.20, pp.84-91, 1989.

, Scientific RepoRts |, vol.9, p.1090, 2019.

I. A. Mulder, Funnel-freezing versus heat-stabilization for the visualization of metabolites by mass spectrometry imaging in a mouse stroke model, Proteomics, vol.16, pp.1652-1659, 2016.

G. L. Fisher, J. S. Hammond, S. R. Bryan, P. E. Larson, and R. M. Heeren, The Composition of Poly(Ethylene Terephthalate) (PET) Surface Precipitates Determined at High Resolving Power by Tandem Mass Spectrometry Imaging, Microsc Microanal, vol.23, pp.843-848, 2017.