R. Sankowski, S. Mader, and S. I. Valdes-ferrer, Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration, Front. Cell. Neurosci, vol.9, 2015.

H. Kettenmann, U. Hanisch, M. Noda, and A. Verkhratsky, Physiology of Microglia, Physiol. Rev, vol.91, pp.461-553, 2011.

M. Prinz, D. Erny, and N. Hagemeyer, Ontogeny and homeostasis of CNS myeloid cells, Nat. Immunol, vol.18, pp.385-392, 2017.

Q. Li and B. A. Barres, Microglia and macrophages in brain homeostasis and disease, Nat. Rev. Immunol, 2017.

F. Ginhoux, Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, pp.841-846, 2010.

F. Ginhoux and M. Prinz, Origin of Microglia: Current Concepts and Past Controversies, Cold Spring Harb. Perspect. Biol, vol.7, p.20537, 2015.

L. Marrec-croq, F. Drago, F. Vizioli, J. Sautière, P. Lefebvre et al., The leech nervous system: A valuable model to study the microglia involvement in regenerative processes, Clin. Dev. Immunol, p.2013, 2013.

F. Drago, Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calcium-binding adapter molecule 1 (Iba1/alias aif-1), Dev. Neurobiol, vol.74, 2014.

C. Boidin-wichlacz, Morphological and functional characterization of leech circulating blood cells: role in immunity and neural repair, Cell. Mol. Life Sci, vol.69, pp.1717-1731, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00731469

A. Tasiemski and M. Salzet, Neuro-immune lessons from an annelid: The medicinal leech, Dev. Comp. Immunol, vol.66, pp.33-42, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01344745

D. Schikorski, Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia, J. Immunol, vol.181, pp.1083-95, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00350100

F. Croq, A homologous form of human interleukin 16 is implicated in microglia recruitment following nervous system injury in leech Hirudo medicinalis, Glia, vol.58, 2010.

M. Tahtouh, Interaction of HmC1q with leech microglial cells: Involvement of C1qBP-related molecule in the induction of cell chemotaxis, J. Neuroinflammation, vol.9, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650047

M. Tahtouh, Evidence for a novel chemotactic C1q domain-containing factor in the leech nerve cord, Mol. Immunol, vol.46, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00350105

D. Schikorski, Deciphering the immune function and regulation by a TLR of the cytokine EMAPII in the lesioned central nervous system using a leech model, J. Immunol, vol.183, pp.7119-7147, 2009.

L. Marrec-croq and F. , Calreticulin contributes to C1q-dependent recruitment of microglia in the leech Hirudo medicinalis following a CNS injury, Med. Sci. Monit, vol.20, 2014.

K. Arafah, Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech, Glia, 2013.

E. Mcglade-mcculloh, A. M. Morrissey, F. Norona, and K. J. Muller, Individual microglia move rapidly and directly to nerve lesions in the leech central nervous system, Proc. Natl. Acad. Sci. USA, vol.86, pp.1093-1100, 1989.

V. J. Morgese, E. J. Elliott, and K. J. Muller, Microglial movement to sites of nerve lesion in the leech CNS, Brain Res, vol.272, pp.166-70, 1983.

E. M. Ngu, C. L. Sahley, and K. J. Muller, Reduced axon sprouting after treatment that diminishes microglia accumulation at lesions in the leech CNS, J. Comp. Neurol, 2007.

R. E. Coggeshall and D. W. Fawcett, The Fine Structure of the Central Nervous System of the Leech, Hirudo Medicinalis, J. Neurophysiol, vol.27, pp.229-289, 1964.

D. Gosselin, Environment drives selection and function of enhancers controlling tissue-specific macrophage identities, Cell, vol.159, pp.1327-1367, 2014.

O. Butovsky, Identification of a Unique TGF-? Dependent Molecular and Functional Signature in Microglia, Nat Neurosci, 2014.

A. Attaai, Postnatal maturation of microglia is associated with alternative activation and activated TGF? signaling, Glia, vol.66, pp.1695-1708, 2018.

A. Buttgereit, Sall1 is a transcriptional regulator defining microglia identity and function, Nat. Immunol, vol.17, pp.1397-1406, 2016.

Y. He, ALK5-dependent TGF-? signaling is a major determinant of late-stage adult neurogenesis, Nat. Neurosci, vol.17, pp.943-952, 2014.

A. R. Bialas and B. Stevens, TGF-? signaling regulates neuronal C1q expression and developmental synaptic refinement, Nat. Neurosci, vol.16, pp.1773-82, 2013.

C. C. Boesen, S. Radaev, S. A. Motyka, A. Patamawenu, and P. D. Sun, The 1.1 A crystal structure of human TGF-beta type II receptor ligand binding domain, Structure, vol.10, pp.913-922, 2002.

L. Attisano, J. L. Wrana, E. Montalvo, and J. Massagué, Activation of signalling by the activin receptor complex, Mol. Cell. Biol, vol.16, pp.1066-73, 1996.

R. Wieser, J. L. Wrana, and J. Massagué, GS domain mutations that constitutively activate T beta R-I, the downstream signaling component in the TGF-beta receptor complex, Embo J, vol.14, pp.2199-208, 1995.

U. Persson, The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation, Febs Lett, vol.434, pp.83-90, 1998.

X. Feng and R. Derynck, A kinase subdomain of transforming growth factor-? (TGF-?) type I receptor determines the TGF-? intracellular signaling specificity, Embo J, vol.16, pp.3912-3923, 1997.

R. G. Walker, Circ. Res, vol.118, pp.1125-1142, 2016.

G. J. Inman, SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7, Mol. Pharmacol, vol.62, pp.65-74, 2002.

M. Z. Khan, The chemokine CXCL12 promotes survival of postmitotic neurons by regulating Rb protein, Cell Death Differ, vol.15, pp.1663-1672, 2008.

R. Goazigo, A. Van-steenwinckel, J. Rostène, W. Mélik-parsadaniantz, and S. , Current status of chemokines in the adult CNS, Prog. Neurobiol, vol.104, pp.67-92, 2013.

M. Cheah and M. Andrews, Targeting cell surface receptors for axon regeneration in the central nervous system, Neural Regen. Res, vol.11, p.1884, 2016.

B. Stevens, The classical complement cascade mediates CNS synapse elimination, Cell, vol.131, pp.1164-78, 2007.

M. Prinz and J. Priller, The role of peripheral immune cells in the CNS in steady state and disease, Nat. Neurosci, vol.20, pp.136-144, 2017.

H. Wu, Autoregulation of neurogenesis by GDF11, Neuron, vol.37, pp.197-207, 2003.

J. Kim, GDF11 Controls the Timing of Progenitor Cell Competence in Developing Retina. Science (80-.), vol.308, 1927.

F. Zhang, Acute Hypoxia Induced an Imbalanced M1/M2 Activation of Microglia through NF-?B Signaling in Alzheimer's Disease Mice and Wild-Type Littermates, Front. Aging Neurosci, vol.9, p.282, 2017.

E. S. Levine, C. F. Dreyfus, I. B. Black, and M. R. Plummer, Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors, Proc. Natl. Acad. Sci. USA, vol.92, pp.8074-8081, 1995.

R. Klein, The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3, Cell, vol.66, pp.395-403, 1991.

B. Arnò, Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex, Nat. Commun, vol.5, p.5611, 2014.

M. S. Thion, Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner, Cell, vol.172, pp.500-516, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02118049

F. Drago, ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on, Astrocytes. Front. Pharmacol, vol.8, p.910, 2017.

A. Murgoci, Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy, ChemPhysChem, vol.19, pp.1205-1214, 2018.

T. Arab, Proteomic characterization of leech microglia extracellular vesicles (EVs): comparison between differential ultracentrifugation and Optiprep TM density gradient isolation, J. Extracell. Vesicles, vol.8, p.1603048, 2019.

C. Théry, Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, J. Extracell. Vesicles, vol.7, p.1535750, 2018.

A. Raffo-romero, Medicinal Leech CNS as a Model for Exosome Studies in the Crosstalk between Microglia and Neurons, Int. J. Mol. Sci, vol.19, p.4124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02183492

A. Ishihara, H. Saito, and K. Abe, Transforming growth factor-beta 1 and -beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons, Brain Res, vol.639, pp.21-26, 1994.

J. J. Yi, A. P. Barnes, R. Hand, F. Polleux, and M. D. Ehlers, TGF-beta signaling specifies axons during brain development, Cell, vol.142, pp.144-57, 2010.

T. Tomoda, Transforming growth factor-beta is a survival factor for neonate cortical neurons: coincident expression of type I receptors in developing cerebral cortices, Dev. Biol, vol.179, pp.79-90, 1996.

T. C. Brionne, I. Tesseur, E. Masliah, and T. Wyss-coray, Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain, Neuron, vol.40, pp.1133-1178, 2003.

I. Tesseur and T. Wyss-coray, A role for TGF-beta signaling in neurodegeneration: evidence from genetically engineered models, Curr. Alzheimer Res, vol.3, pp.505-518, 2006.

I. Tesseur, Deficiency in Neuronal TGF-? Signaling Leads to Nigrostriatal Degeneration and Activation of TGF-? Signaling Protects against MPTP Neurotoxicity in Mice, J. Neurosci, vol.37, pp.4584-4592, 2017.

C. Hsu, Top-Down Atmospheric Ionization Mass Spectrometry Microscopy Combined With Proteogenomics, Anal. Chem, vol.89, pp.8251-8258, 2017.

D. Gordon and P. Green, Consed: a graphical editor for next-generation sequencing, Bioinformatics, vol.29, pp.2936-2937, 2013.

D. R. Zerbino, Using the Velvet de novo assembler for short-read sequencing technologies, Curr. Protoc. Bioinforma, Chapter, vol.11, issue.5, 2010.

W. H. Majoros, M. Pertea, and S. L. Salzberg, TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders, Bioinformatics, vol.20, pp.2878-2879, 2004.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 ???CT Method, Methods, vol.25, pp.402-408, 2001.

I. M. Dykes, F. M. Freeman, J. P. Bacon, and J. A. Davies, Molecular basis of gap junctional communication in the CNS of the leech Hirudo medicinalis, J. Neurosci, vol.24, pp.886-94, 2004.

L. Köhidai, Method for determination of chemoattraction in Tetrahymena pyriformis, Curr. Microbiol, vol.30, pp.251-254, 1995.

V. Kertesz and G. J. Van-berkel, Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform, J. Mass Spectrom, vol.45, pp.252-260, 2010.

M. Wisztorski, Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis, Proteomics, vol.16, pp.1622-1632, 2016.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteomewide protein quantification, Nat. Biotechnol, vol.26, pp.1367-72, 2008.

J. Cox, Andromeda: A peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

, Scientific RepoRts |, vol.9, p.6896, 2019.

S. Tyanova, The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, vol.13, pp.731-740, 2016.

S. Tyanova and J. Cox, Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research, Methods in molecular biology, vol.1711, pp.133-148, 2018.

H. Mi, PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements, Nucleic Acids Res, vol.45, pp.183-189, 2017.

D. Szklarczyk, STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

M. Pathan, FunRich: An open access standalone functional enrichment and interaction network analysis tool, Proteomics, vol.15, pp.2597-2601, 2015.