Z. Kou and D. Sun, New era of treatment and evaluation of traumatic brain injury and spinal cord injury, Neural Regen. Res, vol.11, issue.6, 2016.

C. G. Gerin, I. C. Madueke, P. Perkins, S. Hill, K. Smith et al., Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury, Synapse, vol.65, pp.1255-1281, 2011.

A. P. Pego, S. Kubinova, D. Cizkova, I. Vanicky, F. M. Mar et al., Regenerative medicine for the treatment of spinal cord injury: More than just promises?, J. Cell. Mol. Med, vol.16, pp.2564-2582, 2012.

A. M. Siddiqui, M. Khazaei, and M. Fehlings, Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury, Prog. Brain Res, vol.218, pp.15-54, 2015.

N. Nagoshi, H. Nakashima, and M. G. Fehlings, Riluzole as a neuroprotective drug for spinal cord injury: From bench to bedside, Molecules, vol.20, pp.7775-7789, 2015.

B. A. Kakulas and . Neuropathology, The foundation for new treatments in spinal cord injury, Spinal Cord, vol.42, pp.549-563, 2004.

W. D. Dietrich, C. M. Atkins, and H. M. Bramlett, Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia, J. Neurotrauma, vol.26, pp.301-312, 2009.

N. Nagoshi and M. G. Fehlings, Investigational drugs for the treatment of spinal cord injury: Review of preclinical studies and evaluation of clinical trials from Phase I to II, Expert Opin. Investig. Drugs, vol.24, pp.645-658, 2015.

J. W. Fawcett, Overcoming inhibition in the damaged spinal cord, J. Neurotrauma, vol.23, pp.371-383, 2006.

J. W. Fawcett and R. A. Asher, The glial scar and central nervous system repair, Brain Res. Bull, vol.49, pp.377-391, 1999.

G. Garcia-alias, S. Barkhuysen, M. Buckle, and J. W. Fawcett, Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation, Nat. Neurosci, vol.12, pp.1145-1151, 2009.

C. M. Galtrey, R. A. Asher, F. Nothias, and J. W. Fawcett, Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair, Brain, vol.130, pp.926-939, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181430

P. Jendelova, S. Kubinova, I. Sandvig, S. Erceg, A. Sandvig et al., Current developments in cell-and biomaterial-based approaches for stroke repair, Expert Opin. Biol. Ther, vol.16, pp.43-56, 2016.

D. Cizkova, S. Devaux, F. Le-marrec-croq, J. Franck, L. Slovinska et al., Modulation properties of factors released by bone marrow stromal cells on activated microglia: An in vitro study

L. M. Urdzíková, J. R??i?ka, M. Labagnara, K. Kárová, ?. Kubinová et al., Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat, Int. J. Mol. Sci, vol.15, pp.11275-11293, 2014.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, A sensitive and reliable locomotor rating scale for open field testing in rats, J. Neurotrauma, vol.12, pp.1-21, 1995.

A. Marote, F. B. Teixeira, B. R. Mendes-pinheiro, and A. J. Salgado, MSCs-derived exosomes: Cell-secreted nanovesicles with regenerative potential, Front. Pharmacol, 2016.

A. J. Salgado, J. C. Sousa, B. M. Costa, A. O. Pires, A. Mateus-pinheiro et al., Mesenchymal stem cells secretome as a modulator of the neurogenic niche: Basic insights and therapeutic opportunities, Front. Cell. Neurosci, vol.9, p.249, 2015.

F. B. Teixeira, M. M. Carvalho, A. Neves-carvalho, K. M. Panchalingam, L. A. Behie et al., Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial proliferation and differentiation, Stem Cell Rev. Rep, vol.11, pp.288-297, 2014.

D. Cizkova, I. Novotna, L. Slovinska, I. Vanicky, S. Jergova et al., Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury, J. Neurotrauma, vol.28, 1951.

D. Cizkova, J. Rosocha, I. Vanicky, S. Jergova, and M. Cizek, Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat, Cell. Mol. Neurobiol, vol.26, pp.1165-1178, 2006.

I. Grulova, L. Slovinska, J. Blasko, S. Devaux, M. Wisztorski et al., Delivery of alginate scaffold releasing two trophic factors for spinal cord injury repair, Sci. Rep, vol.5, p.13702, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02940249

S. Kubinova, D. Horak, A. Hejcl, Z. Plichta, J. Kotek et al., SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair, J. Tissue Eng. Regen. Med, vol.9, pp.1298-1309, 2015.

J. Ruzicka, L. Machova-urdzikova, J. Gillick, T. Amemori, N. Romanyuk et al., A comparative study of three different types of stem cells for treatment of rat spinal cord injury, Cell Transplant, vol.26, pp.585-603, 2017.

D. Cizkova, F. Le-marrec-croq, J. Franck, J. Slovinska, I. Grulova et al., Alterations of protein composition along the rostro-caudal axis after spinal cord injury: Proteomic, in vitro and in vivo analyses, Front. Cell. Neurosci, issue.8, p.105, 2014.

S. Devaux, D. Cizkova, J. Quanico, J. Franck, S. Nataf et al., Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time-and segment-specific window for effective tissue repair, Mol. Cell. Proteom, vol.15, pp.2641-2670, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850361

D. Cizkova and E. Racekova, Vanicky, I. The expression of B-50/GAP-43 and GFAP after bilateral olfactory bulbectomy in rats, Physiol. Res, vol.46, pp.487-495, 1997.

I. Novotna, L. Slovinska, I. Vanicky, M. Cizek, J. Radonak et al., IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury, Cell. Mol. Neurobiol, vol.31, pp.1129-1139, 2011.

J. W. Fawcett, A. Curt, J. D. Steeves, W. P. Coleman, M. H. Tuszynski et al., Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials, Spinal Cord, vol.45, pp.190-205, 2007.

H. R. Hofer and R. S. Tuan, Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies, Stem Cell Res. Ther, vol.7, p.131, 2016.

K. L. Lankford, E. J. Arroyo, K. Nazimek, K. Bryniarski, P. W. Askenase et al., Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord, PLoS ONE, vol.13, 2018.

Y. Yang, Y. Ye, X. Su, J. He, W. Bai et al., MSCs-derived exosomes and neuroinflammation, neurogenesis and therapy of traumatic brain injury. Front, Cell. Neurosci, vol.11, 2017.

A. Murgoci, D. Cizkova, P. Majerova, E. Petrovova, L. Medvecky et al., Brain cortex microglia derived exosomes: Novel nanoparticles for glioma therapy, ChemPhysChem, 2018.