J. Quanico, J. Franck, and C. Dauly, Development of liquid microjunction extraction strategy for improving protein identification from tissue sections, J. Proteomics, vol.79, pp.200-218, 2013.

G. Viale, L. Slaets, and F. A. De-snoo, Discordant assessment of tumor biomarkers by histopathological and molecular assays in the EORTC randomized controlled 10041/BIG 03-04 MINDACT trial breast cancer : Intratumoral heterogeneity and DCIS or normal tissue components are unlikely to be the cau, Breast Cancer Res. Treat, vol.155, pp.463-469, 2016.

C. Massard, M. Oulhen, and S. Le-moulec, Phenotypic and genetic heterogeneity of tumor tissue and circulating tumor cells in patients with metastatic castration-resistant prostate cancer: A report from the PETRUS prospective study, Oncotarget, vol.7, pp.55069-55082, 2016.

M. Krö-nig, M. Walter, and V. Drendel, Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity, Oncotarget, vol.6, pp.1302-1314, 2015.

D. J. Johann, J. Rodriguez-canales, and S. Mukherjee, Approaching solid tumor heterogeneity on a cellular basis by tissue proteomics using laser capture microdissection and biological mass spectrometry, J. Proteome Res, vol.8, pp.2310-2318, 2009.

D. J. Johann, S. Mukherjee, and D. A. Prieto, Profiling solid tumor heterogeneity by LCM and biological MS of fresh-frozen tissue sections, Methods Mol. Biol, vol.755, pp.95-106, 2011.

Y. Sugihara, H. Taniguchi, and R. Kushima, Laser microdissection and two-dimensional difference gel electrophoresis reveal proteomic intra-tumor heterogeneity in colorectal cancer, J. Proteomics, vol.78, pp.134-147, 2013.

J. E. Celis, P. Celis, and H. Palsdottir, Proteomic strategies to reveal tumor heterogeneity among urothelial papillomas, Mol. Cell. Proteomics, vol.1, pp.269-279, 2002.

D. Bonnel, R. Longuespee, and J. Franck, Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer, Anal. Bioanal. Chem, vol.401, pp.149-165, 2011.

J. Bruand, T. Alexandrov, and S. Sistla, AMASS: Algorithm for MSI analysis by semi-supervised segmentation, J. Proteome Res, vol.10, pp.4734-4743, 2011.

M. Wisztorski, A. Desmons, and J. Quanico, Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis, Proteomics, vol.16, pp.1622-1632, 2016.

M. Wisztorski, B. Fatou, and J. Franck, Microproteomics by liquid extraction surface analysis: application to FFPE tissue to study the fimbria region of tubo-ovarian cancer, Proteomics Clin. Appl, vol.7, pp.234-240, 2013.

M. J. Walworth, J. J. Stankovich, and G. J. Van-berkel, Hydrophobic treatment enabling analysis of wettable surfaces using a liquid microjunction surface sampling probe/electrospray ionization-mass spectrometry system, Anal. Chem, vol.83, pp.591-597, 2011.

M. J. Walworth, M. S. Elnaggar, and J. J. Stankovich, Direct sampling and analysis from solid-phase extraction cards using an automated liquid extraction surface analysis nanoelectrospray mass spectrometry system, Rapid Commun. Mass Spectrom, vol.25, pp.2389-2396, 2011.

G. J. Van-berkel and V. Kertesz, Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins, Rapid Commun. Mass Spectrom, vol.27, pp.1329-1334, 2013.

G. J. Van-berkel and V. Kertesz, Application of a liquid extraction based sealing surface sampling probe for mass spectrometric analysis of dried blood spots and mouse whole-body thin tissue sections, Anal. Chem, vol.81, pp.9146-9152, 2009.

J. Franck, J. Quanico, and M. Wisztorski, Quantification-based mass spectrometry imaging of proteins by parafilm assisted microdissection, Anal. Chem, vol.85, pp.8127-8134, 2013.

V. Kertesz, T. M. Weiskittel, and G. J. Van-berkel, An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis, Anal. Bioanal. Chem, vol.407, pp.2117-2125, 2015.

V. Kertesz and G. J. Van-berkel, Sampling reliability, spatial resolution, spatial precision, and extraction efficiency in droplet-based liquid microjunction surface sampling, Rapid Commun. Mass Spectrom, vol.28, 2014.

V. Kertesz and G. J. Van-berkel, Automated liquid microjunction surface sampling-HPLC-MS/MS analysis of drugs and metabolites in whole-body thin tissue sections, Bioanalysis, vol.5, pp.819-826, 2013.

V. Kertesz and G. J. Van-berkel, Fully automated liquid extractionbased surface sampling and ionization using a chip-based robotic nanoelectrospray platform, J. Mass Spectrom, vol.45, pp.252-260, 2010.

V. Kertesz and G. J. Van-berkel, Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections, Anal. Chem, vol.82, pp.5917-5921, 2010.

J. F. Emory, M. J. Walworth, and G. J. Van-berkel, Direct analysis of reversed-phase high-performance thin layer chromatography separated tryptic protein digests using a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry system, Eur. J. Mass Spectrom, vol.16, pp.21-33, 2010.

M. S. Elnaggar, C. Barbier, and G. J. Van-berkel, Liquid microjunction surface sampling probe fluid dynamics: computational and experimental analysis of coaxial intercapillary positioning effects on sample manipulation, J. Am. Soc. Mass Spectrom, vol.22, pp.1157-1166, 2011.

J. Quanico, J. Franck, and T. Cardon, NanoLC-MS coupling of liquid microjunction microextraction for on-tissue proteomic analysis, Biochim. Biophys. Acta -Proteins Proteomics, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02940625

T. A. Zimmerman, S. S. Rubakhin, and J. V. Sweedler, MALDI mass spectrometry imaging of neuronal cell cultures, J. Am. Soc. Mass Spectrom, vol.22, pp.828-836, 2011.

J. Quanico, J. Franck, and J. P. Gimeno, Parafilm-assisted microdissection: a sampling method for mass spectrometry-based identification of differentially expressed prostate cancer protein biomarkers, Chem. Commun, vol.51, pp.4564-4567, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02940232

S. Nicolardi, L. Switzar, and A. M. Deelder, Top-down MALDI-insource decay-FTICR mass spectrometry of isotopically resolved proteins, Anal. Chem, vol.87, pp.3429-3437, 2015.

Q. Kou, B. Zhu, and S. Wu, Characterization of proteoforms with unknown post-translational modifications using the MIScore, J. Proteome Res, vol.15, pp.2422-2432, 2016.

R. T. Fellers, J. B. Greer, and B. P. Early, ProSight Lite: graphical software to analyze top-down mass spectrometry data, Proteomics, vol.15, pp.1235-1238, 2015.

R. Birner-gruenberger and R. Breinbauer, Weighing the proteasome for covalent modifications, Chem. Biol, vol.22, pp.315-316, 2015.

J. C. Tran, L. Zamdborg, and D. R. Ahlf, Mapping intact protein isoforms in discovery mode using top-down proteomics, Nature, vol.480, pp.254-258, 2011.

X. Liu, S. Hengel, and S. Wu, Identification of ultramodified proteins using top-down tandem mass spectra, 2013.

H. Ye, R. Mandal, and A. Catherman, Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders, PLoS ONE, vol.9, 2014.

S. Laouirem, J. Le-faouder, and T. Alexandrov, Progression from cirrhosis to cancer is associated with early ubiquitin post-translational modifications: identification of new biomarkers of cirrhosis at risk of malignancy, J. Pathol, vol.234, pp.452-463, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01616775

B. Vanderperre, J. Lucier, and C. Bissonnette, Direct detection of alternative open reading frames translation products in human significantly expands the proteome, PLoS ONE, vol.8, 2013.

H. Mouilleron, V. Delcourt, and X. Roucou, Death of a dogma: eukaryotic mRNAs can code for more than one protein, Nucleic Acids Res, vol.44, pp.14-23, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02940410

M. Zheng, N. G. Seidah, and J. E. Pintar, The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes, 1997.

, Dev. Biol, vol.181, pp.268-283

T. Walther, D. Albrecht, and M. Becker, Improved learning and memory in aged mice deficient in amyloid beta-degrading neutral endopeptidase, PLoS ONE, vol.4, 2009.

J. M. Saavedra, J. Fernandez-pardal, and C. Chevillard, Angiotensin-converting enzyme in discrete areas of the rat forebrain and pituitary gland, Brain Res, vol.245, pp.317-325, 1982.

D. Harmer, M. Gilbert, R. Borman, and K. L. Clark, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme, FEBS Lett, vol.532, pp.107-110, 2002.

J. Quanico, J. Franck, M. Salzet, and I. Fournier, On-tissue direct monitoring of global hydrogen/deuterium exchange by MALDI mass spectrometry: TDXMS, Mol. Cell. Proteomics, vol.33, pp.0-3, 2016.

J. A. Vizcaino, A. Csordas, and N. Del-toro, 2016 update of the PRIDE database and its related tools, Nucleic Acids Res, vol.44, pp.447-456, 2016.

A. Bonnet, S. Lagarrigue, and L. Liaubet, Pathway results from the chicken data set using GOTM, Pathway Studio and Ingenuity softwares, BMC Proc, vol.3, p.11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00730039

A. Yuryev, E. Kotelnikova, and N. Daraselia, Ariadne's ChemEffect and pathway studio knowledge base, Expert Opin Drug Discov, vol.4, pp.1307-1318, 2009.

H. Heberle, G. V. Meirelles, and F. R. Da-silva, InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, vol.16, p.169, 2015.

E. S. Lein, M. J. Hawrylycz, and N. Ao, Genome-wide atlas of gene expression in the adult mouse brain, Nature, vol.445, pp.168-176, 2007.

J. M. Chick, D. Kolippakkam, and D. P. Nusinow, A masstolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides, Nat. Biotechnol, 2015.

D. Szklarczyk, A. Franceschini, and S. Wyder, STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-452, 2015.

M. Salzet, D. Vieau, and R. Day, Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids, Trends Neurosci, vol.23, pp.550-555, 2000.

R. Day and M. Salzet, The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system, Neuro. Endocrinol. Lett, vol.23, pp.447-451

S. K. Maier, H. Hahne, and A. M. Gholami, Comprehensive identification of proteins from MALDI imaging, Mol. Cell. Proteomics, vol.12, pp.2901-2910, 2013.

J. Song, H. Tan, and A. J. Perry, PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites, PLoS ONE, 2012.

A. J. Trexler and E. Rhoades, N-Terminal acetylation is critical for forming ?-helical oligomer of ?-synuclein, Protein Sci, vol.21, pp.601-605, 2012.

T. A. Sarafian, C. M. Ryan, and P. Souda, Impairment of mitochondria in adult mouse brain overexpressing predominantly fulllength, N-terminally acetylated human ??-synuclein, PLoS ONE, 2013.

A. Lundby, A. Secher, and K. Lage, Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues, Nat. Commun, vol.3, p.876, 2012.

M. Salzet, Neuroimmunology of opioids from invertebrates to human, Neuro. Endocrinol. Lett, vol.22, pp.467-474, 2001.

C. Mé-riaux, J. Franck, and D. B. Park, Human temporal lobe epilepsy analyses by tissue proteomics, Hippocampus, vol.24, pp.628-642, 2014.

J. Ho-kim, J. Franck, and T. Kang, Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer's disease, Sci. Rep, vol.5, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02940247

M. Asai, M. A. Lilian-mayagoitia, L. M. David-garcía, and D. G. , Rat brain opioid peptides-circadian rhythm is under control of melatonin, Neuropeptides, vol.41, pp.389-397, 2007.

Q. Hou, X. Gao, and X. Zhang, SNAP-25 in hippocampal CA1 region is involved in memory consolidation, Eur. J. Neurosci, vol.20, pp.1593-1603, 2004.

H. Song, C. F. Stevens, and F. H. Gage, Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons, Nat. Neurosci, vol.5, pp.438-445, 2002.

L. Aigner, S. Arber, and J. P. Kapfhammer, Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice, Cell, vol.83, pp.269-278, 1995.

O. Johansson, T. Hö-kfelt, and R. P. Elde, Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat, Neuroscience, vol.13, pp.265-339, 1984.

P. Dournaud, F. Jazat-poindessous, and A. Slama, Correlations between water maze performance and cortical somatostatin mRNA and high-affinity binding sites during ageing in rats, Eur. J. Neurosci, vol.8, pp.476-485, 1996.

E. Yus-ná-jera, A. Muñ-oz, and N. Salvador, Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation, Neuroscience, vol.120, pp.353-364, 2003.

J. Poirier, A. Baccichet, D. Dea, and S. Gauthier, Cholesterol synthesis and lipoprotein reuptake during synaptic remodelling in hippocampus in adult rats, Neuroscience, vol.55, pp.81-90, 1993.

D. H. Choi, Y. J. Kim, and Y. G. Kim, Role of matrix metalloproteinase 3-mediated ?-synuclein cleavage in dopaminergic cell death, J. Biol. Chem, vol.286, pp.14168-14177, 2011.