G. Locher, Biological effects and therapeutic possibilities of neutrons, Am. J. Roentgenol. Radium Ther, vol.36, pp.1-13, 1936.

R. F. Barth, J. A. Coderre, M. G. Vicente, and T. E. Blue, Boron neutron capture therapy of cancer: Current status and future prospects, Clin. Cancer Res, vol.11, pp.3987-4002, 2005.

T. Aihara, N. Morita, N. Kamitani, H. Kumada, K. Ono et al., BNCT for advanced or recurrent head and neck cancer, Appl. Radiat. Isot, vol.88, pp.12-15, 2014.

H. Aiyama, K. Nakai, T. Yamamoto, T. Nariai, H. Kumada et al., A clinical trial protocol for second line treatment of malignant brain tumors with BNCT at University of Tsukuba, Appl. Radiat. Isot, vol.69, pp.1819-1822, 2011.

I. Kato, K. Ono, Y. Sakurai, M. Ohmae, A. Maruhashi et al., Effectiveness of BNCT for recurrent head and neck malignancies, Appl. Radiat. Isot, vol.61, pp.1069-1073, 2004.

W. Sauerwein, R. Moss, J. Rassow, F. Stecher-rasmussen, K. Hideghety et al., Organisation and management of the first clinical trial of BNCT in Europe (EORTC protocol 11961).EORTC BNCT study group, Strahlenther. Onkol, vol.175, pp.108-111, 1999.

L. W. Wang, Y. W. Chen, C. Y. Ho, Y. W. Liu, F. I. Chou et al., Fractionated BNCT for locally recurrent head and neck cancer: Experience from a phase I/II clinical trial at Tsing Hua Open-Pool Reactor, Appl. Radiat. Isot, vol.88, pp.23-27, 2014.

D. Haritz, D. Gabel, and R. Huiskamp, Clinical phase-I study of Na2B12H11SH (BSH) in patients with malignant glioma as precondition for boron neutron capture therapy (BNCT), Int. J. Radiat. Oncol. Biol. Phys, vol.28, p.14, 1953.

M. Takagaki, Y. Oda, S. Miyatake, H. Kikuchi, T. Kobayashi et al., Boron neutron capture therapy: Preliminary study of BNCT with sodium borocaptate (Na2B1 2H1 1SH) on glioblastoma, J. Neurooncol, vol.35, pp.177-185, 1997.

S. J. Gonzalez, M. R. Bonomi, G. A. Cruz, H. R. Blaumann, O. A. Calzetta-larrieu et al., First BNCT treatment of a skin melanoma in Argentina: Dosimetric analysis and clinical outcome, Appl. Radiat. Isot, vol.61, pp.1101-1105, 2004.

Y. Mishima, C. Honda, M. Ichihashi, H. Obara, J. Hiratsuka et al., Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound, Lancet, vol.2, pp.388-389, 1989.

T. Kato, K. Hirose, H. Tanaka, T. Mitsumoto, T. Motoyanagi et al., Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT Research Center, Appl. Radiat

A. J. Kreiner, M. Baldo, J. R. Bergueiro, D. Cartelli, W. Castell et al., Accelerator-based BNCT, Appl. Radiat. Isot, vol.88, pp.185-189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02073512

R. F. Barth, P. Mi, and W. Yang, Boron delivery agents for neutron capture therapy of cancer, Cancer Commun, vol.38, 2018.

D. N. Slatkin, A history of boron neutron capture therapy of brain tumours. Postulation of a brain radiation dose tolerance limit, Brain, vol.114, pp.1609-1629, 1991.

S. Chandra, R. F. Barth, S. A. Haider, W. Yang, T. Huo et al., Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas, PLoS ONE, vol.8, 2013.

G. W. Kabalka, A. L. Shaikh, R. F. Barth, T. Huo, W. Yang et al., Boronated unnatural cyclic amino acids as potential delivery agents for neutron capture therapy, Appl. Radiat. Isot, vol.69, pp.1778-1781, 2011.

G. Futamura, S. Kawabata, N. Nonoguchi, R. Hiramatsu, T. Toho et al., Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma, Radiat. Oncol, vol.12, 2017.

S. Kimura, S. Masunaga, T. Harada, Y. Kawamura, S. Ueda et al., Synthesis and evaluation of cyclic RGD-boron cluster conjugates to develop tumor-selective boron carriers for boron neutron capture therapy, Bioorg. Med. Chem, vol.19, pp.1721-1728, 2011.

P. Hoppenz, S. Els-heindl, M. Kellert, R. Kuhnert, S. Saretz et al., A Selective Carborane-Functionalized Gastrin-Releasing Peptide Receptor Agonist as Boron Delivery Agent for Boron Neutron Capture Therapy, J. Org. Chem, vol.85, pp.1446-1457, 2020.

M. Kellert, P. Hoppenz, P. Lonnecke, D. J. Worm, B. Riedl et al., Tuning a modular system-synthesis and characterisation of a boron-rich s-triazine-based carboxylic acid and amine bearing a galactopyranosyl moiety, Dalton Trans, vol.49, pp.57-69, 2020.

M. Kellert, D. J. Worm, P. Hoppenz, M. B. Sarosi, P. Lonnecke et al., Modular triazine-based carborane-containing carboxylic acids-synthesis and characterisation of potential boron neutron capture therapy agents made of readily accessible building blocks, Dalton Trans, vol.48, pp.10834-10844, 2019.

S. Savolainen, M. Kortesniemi, M. Timonen, V. Reijonen, L. Kuusela et al., Boron neutron capture therapy (BNCT) in Finland: Technological and physical prospects after 20 years of experiences, Phys. Med, vol.29, pp.233-248, 2013.

H. Koivunoro, E. Hippelainen, I. Auterinen, L. Kankaanranta, M. Kulvik et al., )B) concentrations of glioma patients treated with BNCT in Finland, Appl. Radiat. Isot, vol.106, issue.1, pp.189-194, 2015.

I. Atallah, C. Milet, M. Henry, V. Josserand, E. Reyt et al., Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma, Head Neck, vol.38, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02349412

A. Jacquart, M. Keramidas, J. Vollaire, R. Boisgard, G. Pottier et al., Novel dye-loaded lipid nanoparticles for long-term and sensitive in vivo near-infrared fluorescence imaging, J. Biomed. Opt, vol.815, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01057402

L. Bai, P. Sun, Y. Liu, H. Zhang, W. Hu et al., Novel aza-BODIPY based small molecular NIR-II fluorophores for in vivo imaging, Chem. Commun, vol.55, pp.10920-10923, 2019.

Y. Ge and D. F. O'shea, Azadipyrromethenes: From traditional dye chemistry to leading edge applications, Chem. Soc. Rev, vol.45, pp.3846-3864, 2016.

A. Godard, G. Kalot, J. Pliquett, B. Busser, X. Le-guevel et al., Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast In Vivo NIR-II Imaging, Bioconj. Chem, vol.31, pp.1088-1092, 2020.

E. Bodio, F. Denat, and C. Goze, BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications, J. Porphyr. Phthalocyanines, vol.23, pp.1159-1183, 2019.

B. Bertrand, K. Passador, C. Goze, F. Denat, E. Bodio et al., Metal-based BODIPY derivatives as multimodal tools for life sciences, Coord. Chem. Rev, vol.358, pp.108-124, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01693664

D. Lhenry, M. Larrouy, C. Bernhard, V. Goncalves, O. Raguin et al., BODIPY: A Highly Versatile Platform for the Design of Bimodal Imaging Probes, Chem. Eur. J, vol.21, pp.13091-13099, 2015.

C. Bernhard, C. Goze, Y. Rousselin, and F. Denat, First bodipy-DOTA derivatives as probes for bimodal imaging, Chem. Commun, vol.46, pp.8267-8269, 2010.

E. Bodio and C. Goze, Investigation of B-F substitution on BODIPY and aza-BODIPY dyes: Development of B-O and B-C BODIPYs, vol.160, pp.700-710, 2019.

O. Flores, J. Pliquett, L. Abad-galan, R. Lescure, F. Denat et al., Aza-BODIPY Platform: Toward an Efficient Water-Soluble Bimodal Imaging Probe for MRI and Near-Infrared Fluorescence, Inorg. Chem, vol.59, pp.1306-1314, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02437148

J. Pliquett, S. Amor, M. Ponce-vargas, M. Laly, C. Racoeur et al., Design of a multifunctionalizable BODIPY platform for the facile elaboration of a large series of gold(i)-based optical theranostics, Dalton Trans, vol.47, pp.11203-11218, 2018.

O. Flores, A. Trommenschlager, S. Amor, F. Marques, F. Silva et al., In vitro and in vivo trackable titanocene-based complexes using optical imaging or SPECT, Dalton Trans, vol.46, pp.14548-14555, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01566449

S. Xuan, N. Zhao, Z. Zhou, F. R. Fronczek, and M. G. Vicente, Synthesis and in Vitro Studies of a Series of Carborane-Containing Boron Dipyrromethenes (BODIPYs), J. Med. Chem, vol.59, pp.2109-2117, 2016.

I. Nakase, M. Katayama, Y. Hattori, M. Ishimura, S. Inaura et al., Intracellular target delivery of cell-penetrating peptide-conjugated dodecaborate for boron neutron capture therapy (BNCT), Chem. Commun, vol.55, pp.13955-13958, 2019.

J. H. Gibbs, H. Wang, N. V. Bhupathiraju, F. R. Fronczek, K. M. Smith et al., Synthesis and properties of a series of carboranyl-BODIPYs, J. Organomet. Chem, vol.798, pp.209-213, 2015.

E. Nakata, M. Koizumi, Y. Yamashita, K. Onaka, Y. Sakurai et al., Design, synthesis and destructive dynamic effects of BODIPY-containing and curcuminoid boron tracedrugs for neutron dynamic therapy, Anticancer Res, vol.31, pp.2477-2481, 2011.

B. Musnier, K. D. Wegner, C. Comby-zerbino, V. Trouillet, M. Jourdan et al., High photoluminescence of shortwave infrared-emitting anisotropic surface charged gold nanoclusters, Nanoscale, vol.11, pp.12092-12096, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02353153

Q. Shen, S. Wang, N. D. Yang, C. Zhang, Q. Wu et al., Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window, J. Lumin, vol.225, 2020.

L. Sancey, V. Motto-ros, S. Kotb, X. Wang, F. Lux et al., Laser-induced breakdown spectroscopy: A new approach for nanoparticle's mapping and quantification in organ tissue, J. Vis. Exp, 2014.

L. Sancey, V. Motto-ros, B. Busser, S. Kotb, J. M. Benoit et al., Laser spectrometry for multi-elemental imaging of biological tissues, Sci. Rep, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071458

Y. Gimenez, B. Busser, F. Trichard, A. Kulesza, J. M. Laurent et al., Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy. Sci. Rep, vol.6, 2016.

B. Busser, S. Moncayo, F. Trichard, V. Bonneterre, N. Pinel et al., Characterization of foreign materials in paraffin-embedded pathological specimens using in situ multi-elemental imaging with laser spectroscopy, Mod. Pathol, vol.31, pp.378-384, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01927018

J. Pliquett, A. Dubois, C. Racoeur, N. Mabrouk, S. Amor et al., A Promising Family of Fluorescent Water-Soluble aza-BODIPY Dyes for in Vivo Molecular Imaging, Bioconj. Chem, vol.30, pp.1061-1066, 2019.

H. Abele, D. Dubbers, H. Haese, M. Klein, A. Knoepfler et al., Characterization of a ballistic supermirror neutron guide, Nucl. Instrum. Methods Phys. Res. Sect. A, vol.562, pp.407-417, 2006.

M. Pedrosa-rivera, M. J. Ruiz-magana, I. Porroas, J. Praena, P. Torres-sanchez et al., Neutron radiobiology studies with a pure cold neutron beam, Nucl. Instrum. Methods Phys. Res. Sect, vol.2020, pp.24-31

K. Hideghety, W. Sauerwein, A. Wittig, C. Gotz, P. Paquis et al., Tissue uptake of BSH in patients with glioblastoma in the EORTC 11961 phase I BNCT trial, J. Neurooncol, vol.62, pp.145-156, 2003.

B. Busser, S. Moncayo, J. L. Coll, and L. Sancey, Motto-Ros, V. Elemental imaging using laser-induced breakdown spectroscopy: A new and promising approach for biological and medical applications, Coord. Chem. Rev, vol.358, pp.70-79, 2018.

K. Yokoyama, S. Miyatake, Y. Kajimoto, S. Kawabata, A. Doi et al., Pharmacokinetic study of BSH and BPA in simultaneous use for BNCT, J. Neurooncol, vol.78, pp.227-232, 2006.

F. Tamanoi, Recent excitements in the study of the CAM assay, vol.46, pp.1-9, 2019.

R. Steiner, Angiostatic activity of anticancer agents in the chick embryo chorioallantoic membrane (CHE-CAM) assay, EXS, vol.61, pp.449-454, 1992.

N. G. Tanaka, N. Sakamoto, A. Tohgo, Y. Nishiyama, and H. Ogawa, Inhibitory effects of anti-angiogenic agents on neovascularization and growth of the chorioallantoic membrane (CAM). The possibility of a new CAM assay for angiogenesis inhibition, Exp. Pathol, vol.30, pp.143-150, 1986.

N. Dunker and V. Jendrossek, Implementation of the Chick Chorioallantoic Membrane (CAM) Model in Radiation Biology and Experimental Radiation Oncology Research, Cancers, vol.11, 1499.

J. H. Park, Y. H. Moon, D. J. Kim, S. A. Kim, J. B. Lee et al., Photodynamic therapy with hexenyl ester of 5-aminolevulinic acid induces necrotic cell death in salivary gland adenocarcinoma cells, Oncol. Rep, vol.24, pp.177-181, 2010.

Z. Zuo, T. Syrovets, Y. Wu, S. Hafner, I. Vernikouskaya et al., The CAM cancer xenograft as a model for initial evaluation of MR labelled compounds

G. Warnock, A. Turtoi, A. Blomme, F. Bretin, M. A. Bahri et al., In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: A new tool for oncology and radiotracer development, J. Nucl. Med, vol.54, pp.1782-1788, 2013.