A. Nikolakopoulou, D. Mavridis, and T. A. Furukawa, Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study, BMJ, vol.360, p.585, 2018.

A. Cipriani, T. A. Furukawa, and G. Salanti, Comparative efficacy and acceptability of 12 new-generation antidepressants: a multipletreatments meta-analysis, Lancet, vol.373, issue.9665, pp.746-758, 2009.

A. Cipriani, T. A. Furukawa, and G. Salanti, Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis, Lancet, vol.391, pp.1357-1366, 2018.

A. Chaimani, J. P. Higgins, D. Mavridis, P. Spyridonos, and G. Salanti, Graphical tools for network meta-analysis in STATA, PLoS One, vol.8, issue.10, p.76654, 2013.

R. C. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

S. Balduzzi, G. Rücker, and G. Schwarzer, How to perform a meta-analysis with R: a practical tutorial, Evid Based Ment Health, vol.22, pp.153-160, 2019.

T. Lumley and . Rmeta, Meta-Analysis. R package version 3, 2018.

G. Rücker, U. Krahn, J. König, O. Efthimiou, G. Schwarzer et al., Network Meta-Analysis using Frequentist Methods. R package version, vol.1, issue.1-0, 2019.

G. Schwarzer, J. R. Carpenter, G. Rücker, R. Meta-analysis-with, and . Switzerland, , 2015.

H. Wickham and E. , ggplot2: Elegant Graphics for Data Analysis, 2016.

. Cinema and . Cinema, Institute of Social and Preventive Medicine. Retrieved on August 2019 from cinema.ispm.unibe.ch, Confidence in Network Meta-Analysis, 2017.

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. Mcpherson, shiny: Web Application Framework for R, 2019.

Y. Luo, A. Chaimani, and Y. Kataoka, Evidence synthesis, practice guidelines and real-world prescriptions of new generation antidepressants in the treatment of depression: a protocol for cumulative network meta-analyses and meta-epidemiological study, BMJ Open, vol.8, issue.12, p.23222, 2018.

T. A. Furukawa, G. Salanti, and L. Z. Atkinson, Comparative efficacy and acceptability of first-generation and secondgeneration antidepressants in the acute treatment of major depression: protocol for a network meta-analysis, BMJ Open, vol.6, issue.7, p.10919, 2016.

J. Higgins and G. Se, Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated, 2011.

, The Cochrane Collaboration, 2011.

B. R. Rutherford, J. R. Sneed, and S. P. Roose, The effects of placebo control and treatment duration in antidepressant trials, Psychother Psychosom, vol.78, issue.3, pp.172-181, 2009.

M. Sinyor, A. J. Levitt, and A. H. Cheung, Does inclusion of a placebo arm influence response to active antidepressant treatment in randomized controlled trials? Results from pooled and metaanalyses, J Clin Psychiatry, vol.71, issue.3, pp.270-279, 2010.

T. A. Furukawa, A. Cipriani, and L. Z. Atkinson, Placebo response rates in antidepressant trials: a systematic review of published and unpublished double-blind randomised controlled studies, Lancet Psychiatry, vol.3, issue.11, pp.1059-1066, 2016.

T. A. Furukawa, A. Cipriani, and S. Leucht, Is placebo response in antidepressant trials rising or not? A reanalysis of datasets to conclude this long-lasting controversy, Evid Based Ment Health, vol.21, issue.1, pp.1-3, 2018.

G. Salanti, A. Chaimani, and T. A. Furukawa, Impact of placebo arms on outcomes in antidepressant trials: systematic review and meta-regression analysis, Int J Epidemiol, vol.47, issue.5, pp.1454-1464, 2018.

A. Nikolakopoulou, J. Higgins, and T. Papakonstantinou, CINeMA: An approach for assessing confidence in the results of a network meta-analysis, PLoS Med, vol.17, issue.4, p.1003082, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02909298

G. Salanti, D. Giovane, C. Chaimani, A. Caldwell, D. M. Higgins et al., Evaluating the quality of evidence from a network meta-analysis, PLoS One, vol.9, issue.7, p.99682, 2014.

T. Papakonstantinou, A. Nikolakopoulou, J. Higgins, M. Egger, and G. Salanti, CINeMA: Software for semi-automated assessment of the Confidence In the results of Network Meta-Analysis. Retrieved on 14, 2019.

A. Nikolakopoulou, J. Higgins, and T. Papakonstantinou, Assessing Confidence in the Results of Network Meta-Analysis (Cinema). bioRxiv, p.597047, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02909298

T. Papakonstantinou, A. Nikolakopoulou, J. Higgins, M. Egger, and G. Salanti, CINeMA: software for semiautomated assessment of the confidence in the results of network metaanalysis, Campbell Syst Rev, vol.16, p.1080, 2020.

Y. Luo, Y. Kataoka, E. G. Ostinelli, A. Cipriani, and T. A. Furukawa, National Prescription Patterns of antidepressants in the treatment of adults with major depression in the US between 1996 and 2015: a population representative survey based analysis, Front Psych, vol.11, p.35, 2020.

D. Mavridis, M. Giannatsi, A. Cipriani, and G. Salanti, A primer on network meta-analysis with emphasis on mental health, Evid Based Ment Health, vol.18, issue.2, pp.40-46, 2015.

T. A. Trikalinos, R. Churchill, and M. Ferri, Effect sizes in cumulative meta-analyses of mental health randomized trials evolved over time, J Clin Epidemiol, vol.57, issue.11, pp.1124-1130, 2004.

C. Barbui, A. Cipriani, P. Brambilla, and M. Hotopf, Wish bias" in antidepressant drug trials?, J Clin Psychopharmacol, vol.24, issue.2, pp.126-130, 2004.

B. T. Gehr, C. Weiss, and F. Porzsolt, The fading of reported effectiveness. A meta-analysis of randomised controlled trials, BMC Med Res Methodol, vol.6, p.25, 2006.

G. Salanti, S. Dias, and N. J. Welton, Evaluating novel agent effects in multiple-treatments meta-regression, Stat Med, vol.29, issue.23, pp.2369-2383, 2010.

J. P. Ioannidis, Why most discovered true associations are inflated, Epidemiology, vol.19, issue.5, pp.640-648, 2008.

A. Tajika, Y. Ogawa, N. Takeshima, Y. Hayasaka, and T. A. Furukawa, Replication and contradiction of highly cited research papers in psychiatry: 10-year follow-up, Br J Psychiatry, vol.207, issue.4, pp.357-362, 2015.

J. P. Ioannidis, Research accomplishments that are too good to be true: reply to ting, Intensive Care Med, vol.40, issue.3, p.468, 2014.

B. Rouse, A. Cipriani, Q. Shi, A. L. Coleman, K. Dickersin et al., Network meta-analysis for clinical practice guidelines: a case study on first-line medical therapies for primary open-angle glaucoma, Ann Intern Med, vol.164, issue.10, pp.674-682, 2016.

K. G. Shojania, M. Sampson, M. T. Ansari, J. J. Doucette, S. Moher et al., How quickly do systematic reviews go out of date? A survival analysis, Ann Intern Med, vol.147, issue.4, pp.224-233, 2007.

J. H. Elliott, T. Turner, and O. Clavisi, Living systematic reviews: an emerging opportunity to narrow the evidence-practice gap, PLoS Med, vol.11, issue.2, p.1001603, 2014.

A. Nikolakopoulou, D. Mavridis, M. Egger, and G. Salanti, Continuously updated network meta-analysis and statistical monitoring for timely decision-making, Stat Methods Med Res, vol.27, issue.5, pp.1312-1330, 2018.

J. Wetterslev, J. C. Jakobsen, and C. Gluud, Trial sequential analysis in systematic reviews with meta-analysis, BMC Med Res Methodol, vol.17, issue.1, p.39, 2017.

P. O. Vandvik, R. Brignardello-petersen, and G. H. Guyatt, Living cumulative network meta-analysis to reduce waste in research: a paradigmatic shift for systematic reviews, BMC Med, vol.14, p.59, 2016.

E. A. Akl, J. J. Meerpohl, J. Elliott, L. A. Kahale, and H. J. Schunemann, Living systematic review N. living systematic reviews: 4. Living guideline recommendations, J Clin Epidemiol, vol.91, pp.47-53, 2017.

J. H. Elliott, A. Synnot, and T. Turner, Living systematic review: 1. Introduction-the why, what, when, and how, J Clin Epidemiol, vol.91, pp.23-30, 2017.

P. Crequit, T. Martin-montoya, N. Attiche, L. Trinquart, A. Vivot et al., Living network meta-analysis was feasible when considering the pace of evidence generation, J Clin Epidemiol, vol.108, pp.10-16, 2019.