A. Singh, L. Tetreault, S. Kalsi-ryan, A. Nouri, and M. G. Fehlings, Global prevalence and incidence of traumatic spinal cord injury, Clinical epidemiology, vol.6, pp.309-331, 2014.

M. J. Devivo, Epidemiology of traumatic spinal cord injury: trends and future implications, Spinal cord, vol.50, pp.365-372, 2012.

S. Devaux, RhoA Inhibitor Treatment At Acute Phase of Spinal Cord Injury May Induce Neurite Outgrowth and Synaptogenesis, Molecular & cellular proteomics: MCP, vol.16, pp.1394-1415, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01827747

D. Cizkova, Essentials of Spinal Cord Injury, 2018.

S. Devaux, Proteomic Analysis of the Spatio-temporal Based Molecular Kinetics of Acute Spinal Cord Injury Identifies a Timeand Segment-specific Window for Effective Tissue Repair, Molecular & cellular proteomics: MCP, vol.15, pp.2641-2670, 2016.

D. Cizkova, Alterations of protein composition along the rostro-caudal axis after spinal cord injury: proteomic, in vitro and in vivo analyses, Front Cell Neurosci, vol.8, 2014.

A. P. Pego, Regenerative medicine for the treatment of spinal cord injury: more than just promises?, J Cell Mol Med, vol.16, pp.2564-2582, 2012.

S. Thuret, L. D. Moon, and F. H. Gage, Therapeutic interventions after spinal cord injury, Nature reviews. Neuroscience, vol.7, pp.628-643, 2006.

J. W. Rowland, G. W. Hawryluk, B. Kwon, and M. G. Fehlings, Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon, Neurosurgical focus, vol.25, 2008.

T. Riegger, Immune depression syndrome following human spinal cord injury (SCI): a pilot study, Neuroscience, vol.158, pp.1194-1199, 2009.

, Scientific RepoRts |, vol.8, 2018.

M. Hanada, Spatiotemporal alteration of phospholipids and prostaglandins in a rat model of spinal cord injury, Analytical and bioanalytical chemistry, vol.403, pp.1873-1884, 2012.

D. J. Hines, R. M. Hines, S. J. Mulligan, and B. A. Macvicar, Microglia processes block the spread of damage in the brain and require functional chloride channels, Glia, vol.57, pp.1610-1618, 2009.

X. Wang, Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris, Glia, vol.63, pp.635-651, 2015.

L. Huang, Mesenchymal Stem Cells Modulate Light-induced Activation of Retinal Microglia Through CX3CL1/CX3CR1

, Signaling. Ocular immunology and inflammation, vol.24, pp.684-692, 2016.

J. M. Rutkowsky, Acylcarnitines activate proinflammatory signaling pathways, American journal of physiology. Endocrinology and metabolism, vol.306, pp.1378-1387, 2014.

A. Viader, Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy, Neuron, vol.77, pp.886-898, 2013.

S. H. Adams, Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women, The Journal of nutrition, vol.139, pp.1073-1081, 2009.

C. S. Mccoin, T. A. Knotts, and S. H. Adams, Acylcarnitines-old actors auditioning for new roles in metabolic physiology, Nature reviews. Endocrinology, vol.11, pp.617-625, 2015.

L. L. Jones, D. A. Mcdonald, and P. R. Borum, Acylcarnitines: role in brain, Progress in lipid research, vol.49, pp.61-75, 2010.

W. L. Titsworth, N. K. Liu, and X. M. Xu, Role of secretory phospholipase a(2) in CNSinflammation: implications in traumatic spinal cord injury, CNS & neurological disorders drug targets, vol.7, pp.254-269, 2008.

D. Xu, Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury, Scientific reports, vol.6, 2016.

K. Chughtai, L. Jiang, T. R. Greenwood, K. Glunde, and R. M. Heeren, Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models, Journal of lipid research, vol.54, pp.333-344, 2013.

A. Roux, Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury, Journal of neuroscience methods, vol.272, pp.19-32, 2016.

M. Girod, Y. Shi, J. X. Cheng, and R. G. Cooks, Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry, Analytical chemistry, vol.83, pp.207-215, 2011.

I. Vanicky, L. Urdzikova, K. Saganova, D. Cizkova, and J. Galik, A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat, Journal of neurotrauma, vol.18, pp.1399-1407, 2001.

D. Trede, Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: threedimensional spatial segmentation of mouse kidney, Analytical chemistry, vol.84, pp.6079-6087, 2012.

S. O. Deininger, Normalization in MALDI-TOF imaging datasets of proteins: practical considerations, Analytical and bioanalytical chemistry, vol.401, pp.167-181, 2011.

T. Alexandrov and J. H. Kobarg, Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering, Bioinformatics, vol.27, pp.230-238, 2011.

L. A. Mcdonnell, A. Van-remoortere, R. J. Van-zeijl, and A. M. Deelder, Mass spectrometry image correlation: quantifying colocalization, Journal of proteome research, vol.7, pp.3619-3627, 2008.

S. Rauser, Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry, Journal of proteome research, vol.9, pp.1854-1863, 2010.

E. Doney, 3D printing of preclinical X-ray computed tomographic data sets, Journal of visualized experiments, vol.50250, 2013.

B. Fatou, In vivo Real-Time Mass Spectrometry for Guided Surgery Application. Scientific reports, vol.6, 2016.

J. Balog, In vivo endoscopic tissue identification by rapid evaporative ionization mass spectrometry (REIMS), Angewandte Chemie, vol.54, pp.11059-11062, 2015.

, Scientific RepoRts |, vol.8, 2018.