I. Pastushenko, A. Brisebarre, A. Sifrim, M. Fioramonti, T. Revenco et al., Nature, vol.556, issue.7702, pp.463-468, 2018.

T. Brabletz, R. Kalluri, M. A. Nieto, and R. A. Weinberg, Nat. Rev. Cancer, vol.18, issue.2, pp.128-134, 2018.

B. De-craene and G. Berx, Regulatory networks defining EMT during cancer initiation and progression, Nat. Rev. Cancer, vol.13, issue.2, pp.97-110, 2013.

T. Zhang, L. Guo, C. J. Creighton, Q. Lu, D. L. Gibbons et al., A genetic cell context-dependent role for ZEB1 in lung cancer, Nat. Commun, vol.7, p.12231, 2016.

J. Caramel, M. Ligier, and A. Puisieux, Pleiotropic roles for ZEB1 in Cancer, Cancer Res, vol.78, issue.1, pp.30-35, 2018.

C. Vandewalle, F. Van-roy, and G. Berx, The role of the ZEB family of transcription factors in development and disease, Cell. Mol. Life Sci, vol.66, issue.5, pp.773-787, 2009.

A. A. Postigo and D. C. Dean, Independent repressor domains in ZEB regulate muscle and T-cell differentiation, Mol. Cell. Biol, vol.19, issue.12, pp.7961-7971, 1999.

V. Maturi, S. Enroth, C. H. Heldin, and A. Moustakas, Genome-wide binding of transcription factor ZEB1 in triple-negative breast cancer cells, J. Cell. Physiol, vol.233, issue.10, pp.7113-7127, 2018.

W. Lehmann, D. Mossmann, J. Kleemann, K. Mock, C. Meisinger et al., ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types, Nat. Commun, vol.7, p.10498, 2016.

J. E. Larsen, V. Nathan, J. K. Osborne, R. K. Farrow, D. Deb et al., ZEB1 drives epithelial-to-mesenchymal transition in lung cancer, J. Clin. Invest, vol.126, issue.9, pp.3219-3235, 2016.

A. M. Krebs, J. Mitschke, M. Losada, O. Schmalhofer, M. Boerries et al., The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer, Nat. Cell Biol, vol.19, issue.5, pp.518-529, 2017.

Y. Liu, X. Lu, L. Huang, W. Wang, G. Jiang et al., Different thresholds of ZEB1 are required for Ras-mediated tumour initiation and metastasis, Nat. Commun, vol.5, p.5660, 2014.

B. Vanderperre, J. F. Lucier, C. Bissonnette, J. Motard, G. Tremblay et al., Direct detection of alternative open reading frames translation products in human significantly expands the proteome, PLoS One, vol.8, issue.8, p.70698, 2013.

J. H. Taube, J. Herschkowitz, K. Komurov, A. Y. Zhou, S. Gupta et al., Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudinlow and metaplastic breast cancer subtypes, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.35, pp.15449-15459, 2010.

C. Wels, S. Joshi, P. Koefinger, H. Bergler, and H. Schaider, Transcriptional activation of ZEB1 by slug leads to cooperative regulation of the epithelial-Mesenchymal transition-like phenotype in melanoma, J. Invest. Dermatol, vol.131, issue.9, pp.1877-1885, 2011.

X. Ye, W. L. Tam, T. Shibue, Y. Kaygusuz, F. Reinhardt et al., Distinct EMT programs control normal mammary stem cells and tumour-initiating cells, Nature, vol.525, issue.7568, pp.256-260, 2015.

W. S. Wu, R. I. You, C. C. Cheng, M. C. Lee, T. Y. Lin et al., Snail collaborates with EGR-1 and SP-1 to directly activate transcription of MMP 9 and ZEB1, Sci. Rep, vol.7, issue.1, p.17753, 2017.

N. Dave, S. Guaita-esteruelas, S. Gutarra, M. Frias, S. Beltran et al., Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition, J. Biol. Chem, vol.286, issue.14, pp.12024-12032, 2011.

E. Sánchez-tilló, O. Barrios, L. Siles, M. Cuatrecasas, A. Castells et al., Postigo, ?catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)-activator ZEB1 to regulate tumor invasiveness, Proc. Natl. Acad. Sci. U. S. A, vol.108, issue.48, pp.19204-19209, 2011.

H. Xiong, J. Hong, W. Du, Y. W. Lin, L. L. Ren et al., Fang, Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition, J. Biol. Chem, vol.287, issue.8, pp.5819-5832, 2012.

W. Sun, J. M. Yu, F. Hua, J. Xie, H. Lin et al., BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells, Cancer Lett, vol.365, issue.2, pp.190-200, 2015.

H. L. Chua, P. Bhat-nakshatri, S. E. Clare, A. Morimiya, S. Badve et al., NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2, Oncogene, vol.26, issue.5, pp.711-724, 2007.

D. K. Singh, R. K. Kollipara, V. Vemireddy, X. L. Yang, Y. Sun et al., Oncogenes activate an autonomous transcriptional regulatory circuit that drives glioblastoma, vol.18, pp.961-976, 2017.

W. Zhang, X. Shi, Y. Peng, M. Wu, P. Zhang et al., HIF-1? promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal Cancer, PLoS One, vol.10, issue.6, p.129603, 2015.

B. G. Hollier, A. A. Tinnirello, S. J. Werden, K. W. Evans, J. H. Taube et al., FOXC2 expression links epithelialmesenchymal transition and stem cell properties in breast cancer, Cancer Res, vol.73, issue.6, pp.1981-1982, 2013.

S. J. Werden, N. Sphyris, T. R. Sarkar, A. N. Paranjape, A. M. Labaff et al., Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth, Oncogene, vol.35, issue.46, pp.5977-5988, 2016.

Y. Liu, E. Sánchez-tilló, X. Lu, L. Huang, B. Clem et al., Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression, J. Biol. Chem, vol.288, issue.16, pp.11572-11580, 2013.

Y. Liu, M. E. Costantino, D. Montoya-durango, Y. Higashi, D. S. Darling et al., The zinc finger transcription factor ZFHX1A is linked to cell proliferation by Rb-E2F1, Biochem. J, vol.408, issue.1, pp.79-85, 2007.

B. Cieply, P. Riley-4th, P. M. Pifer, J. Widmeyer, J. B. Addison et al., Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2, Cancer Res, vol.72, issue.9, pp.2440-2453, 2012.

B. Cieply, J. Farris, J. Denvir, H. L. Ford, and S. M. Frisch, Epithelial-mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2, Cancer Res, vol.73, issue.20, pp.6299-6309, 2013.

S. Werner, S. Frey, S. Riethdorf, C. Schulze, M. Alawi et al., Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer, J. Biol. Chem, vol.288, issue.32, pp.22993-23008, 2013.

V. Y. Chung, T. Z. Tan, M. Tan, M. K. Wong, K. T. Kuay et al., GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification, Sci. Rep, vol.6, 2016.

B. Lee, A. Villarreal-ponce, M. Fallahi, J. Ovadia, P. Sun et al., Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells, Dev. Cell, vol.29, issue.1, pp.47-58, 2014.

K. Watanabe, A. Villarreal-ponce, P. Sun, M. L. Salmans, M. Fallahi et al., Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor, Dev. Cell, vol.29, issue.1, pp.59-74, 2014.

H. Roca, J. Hernandez, S. Weidner, R. C. Mceachin, D. Fuller et al., Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer, PLoS One, vol.8, issue.10, p.76773, 2013.

T. Hong, K. Watanabe, C. H. Ta, A. Villarreal-ponce, Q. Nie et al., An Ovol2-Zeb1 mutual inhibitory circuit governs bidirectional and multi-step transition between epithelial and mesenchymal states, PLoS Comput. Biol, vol.11, issue.11, p.1004569, 2015.

D. Jia, M. K. Jolly, M. Boareto, P. Parsana, S. M. Mooney et al., OVOL guides the epithelial-hybrid-mesenchymal transition, Oncotarget, vol.6, issue.17, pp.15436-15448, 2015.

T. L. Messier, J. A. Gordon, J. R. Boyd, C. E. Tye, G. Browne et al., Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes, Oncotarget, vol.7, issue.5, pp.5094-5109, 2016.

C. L. Chaffer, N. D. Marjanovic, T. Lee, G. Bell, C. G. Kleer et al., Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity, Cell, vol.154, issue.1, pp.61-74, 2013.

N. Skrypek, S. Goossens, E. De, N. Smedt, G. Vandamme et al., Epithelial-to-Mesenchymal transition: epigenetic reprogramming driving cellular plasticity, Trends Genet, vol.33, issue.12, pp.943-959, 2017.

I. M. Shapiro, A. W. Cheng, N. C. Flytzanis, M. Balsamo, J. S. Condeelis et al., An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype, PLoS Genet, vol.7, issue.8, p.1002218, 2011.

Y. Yang, J. W. Park, T. W. Bebee, C. C. Warzecha, Y. Guo et al., Determination of a comprehensive alternative splicing regulatory network and combinatorial regulation by key factors during the epithelial-to-Mesenchymal transition, Mol. Cell. Biol, vol.36, issue.11, pp.1704-1719, 2016.

J. Li, P. S. Choi, C. L. Chaffer, K. Labella, J. H. Hwang et al., An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer, p.37184, 2018.

S. Li, H. Y. Zhang, L. C. Du, Z. X. , M. X. An et al., Induction of epithelial-mesenchymal transition (EMT) by Beclin 1 knockdown via posttranscriptional upregulation of ZEB1 in thyroid cancer cells, Oncotarget, vol.7, issue.43, pp.70364-70377, 2016.

P. Hou, L. Li, F. Chen, Y. Chen, H. Liu et al., Seminars in Cancer Biology, vol.58, pp.1-10, 2019.

, regulation of ZEB1 mRNA stability promotes epithelial-mesenchymal transition in breast cancer, Cancer Res, vol.78, issue.2, pp.387-398, 2018.

H. H. Al-khalaf and A. Aboussekhra, MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding protein AUF1 targeting the transcription factor ZEB1 and the protein kinase AKT, J. Biol. Chem, vol.289, issue.45, pp.31433-31447, 2014.

M. Riaz, M. T. Van-jaarsveld, A. Hollestelle, W. J. Prager-van-der-smissen, A. A. Heine et al., Martens, miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs, Breast Cancer Res, vol.15, issue.2, p.33, 2013.

J. Zhang and L. Ma, MicroRNA control of epithelial-mesenchymal transition and metastasis, Cancer Metastasis Rev, vol.31, issue.3-4, pp.653-662, 2012.

S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes Dev, vol.22, issue.7, pp.894-907, 2008.

M. Diepenbruck, S. Tiede, M. Saxena, R. Ivanek, R. K. Kalathur et al., miR-1199-5p and Zeb1 function in a doublenegative feedback loop potentially coordinating EMT and tumour metastasis, Nat. Commun, vol.8, issue.1, p.1168, 2017.

U. Wellner, J. Schubert, U. C. Burk, O. Schmalhofer, F. Zhu et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs, Nat. Cell Biol, vol.11, issue.12, pp.1487-1495, 2009.

X. J. Tian, H. Zhang, and J. Xing, Coupled reversible and irreversible bistable switches underlying TGF?-induced epithelial to mesenchymal transition, Biophys. J, vol.105, issue.4, pp.1079-1089, 2013.

M. Lu, M. K. Jolly, H. Levine, J. N. Onuchic, and E. Ben-jacob, MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.45, pp.18144-18149, 2013.

I. Passacantilli, V. Panzeri, P. Bielli, D. Farini, E. Pilozzi et al., Alternative polyadenylation of ZEB1 promotes its translation during genotoxic stress in pancreatic cancer cells, Cell Death Dis, vol.8, issue.11, p.3168, 2017.

S. J. Song, L. Poliseno, M. S. Song, U. Ala, K. Webster et al., MicroRNAantagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling, Cell, vol.154, issue.2, pp.311-324, 2013.

J. Y. Liao, J. Wu, Y. J. Wang, J. H. He, W. X. Deng et al., Deep sequencing reveals a global reprogramming of lncRNA transcriptome during EMT, Biochim. Biophys. Acta, vol.1864, issue.10, pp.1703-1713, 2017.

J. H. Yuan, F. Yang, F. Wang, J. Z. Ma, Y. J. Guo et al., A long noncoding RNA activated by TGF-? promotes the invasion-metastasis cascade in hepatocellular carcinoma, Cancer Cell, vol.25, issue.5, pp.666-681, 2014.

Q. Xu, F. Deng, Y. Qin, Z. Zhao, Z. Wu et al., Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis, Cell Death Dis, vol.7, issue.6, p.2254, 2016.

D. L. Chen, L. Z. Chen, Y. X. Lu, D. S. Zhang, Z. L. Zeng et al., Long noncoding RNA XIST expedites metastasis and modulates epithelial-mesenchymal transition in colorectal cancer, Cell Death Dis, vol.8, issue.8, p.3011, 2017.

S. P. Li, H. X. Xu, Y. Yu, J. D. He, Z. Wang et al., LncRNA HULC enhances epithelialmesenchymal transition to promote tumorigenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway, Oncotarget, vol.7, issue.27, pp.42431-42446, 2016.

Y. Shen, S. Liu, H. Yuan, X. Ying, H. Fu et al., A long non-coding RNA lncRNA-PE promotes invasion and epithelial-mesenchymal transition in hepatocellular carcinoma through the miR-200a/b-ZEB1 pathway, Tumour Biol, vol.39, issue.5, p.1010428317705756, 2017.

P. S. Wang, C. H. Chou, C. H. Lin, Y. C. Yao, H. C. Cheng et al., A novel long non-coding RNA linc-ZNF469-3 promotes lung metastasis through miR-574-5p-ZEB1 axis in triple negative breast cancer, Oncogene, 2018.

T. Yang, X. He, A. Chen, K. Tan, and X. Du, LncRNA HOTAIR contributes to the malignancy of hepatocellular carcinoma by enhancing epithelial-mesenchymal transition via sponging miR-23b-3p from ZEB1, Gene, vol.670, pp.114-122, 2018.

W. C. Xiong, N. Han, N. Wu, K. L. Zhao, C. Han et al., Interplay between long noncoding RNA ZEB1-AS1 and miR-101/ZEB1 axis regulates proliferation and migration of colorectal cancer cells, Am. J. Transl. Res, vol.10, issue.2, pp.605-617, 2018.

W. Su, M. Xu, X. Chen, N. Chen, J. Gong et al., Long noncoding RNA ZEB1-AS1 epigenetically regulates the expressions of ZEB1 and downstream molecules in prostate cancer, Mol. Cancer, vol.16, issue.1, p.142, 2017.

S. Thomson, F. Petti, I. Sujka-kwok, P. Mercado, J. Bean et al., A systems view of epithelialmesenchymal transition signaling states, Clin. Exp. Metastasis, vol.28, issue.2, pp.137-155, 2011.

D. Vergara, E. Stanca, F. Guerra, P. Priore, A. Gaballo et al., Maffia, ?-Catenin knockdown affects mitochondrial biogenesis and lipid metabolism in breast Cancer cells, Front. Physiol, vol.8, p.544, 2017.

D. Vergara, P. Simeone, P. Boccio, C. Toto, D. Pieragostino et al., Comparative proteome profiling of breast tumor cell lines by gel electrophoresis and mass spectrometry reveals an epithelial mesenchymal transition associated protein signature, Mol. Biosyst, vol.9, issue.6, pp.1127-1138, 2013.

S. Palma-cde, M. L. Grassi, C. H. Thomé, G. A. Ferreira, D. Albuquerque et al., Proteomic analysis of epithelial to mesenchymal transition (EMT) reveals cross-talk between SNAIL and HDAC1 proteins in breast Cancer cells, Mol. Cell Proteomics, vol.15, issue.3, pp.906-917, 2016.

M. E. Costantino, R. P. Stearman, G. E. Smith, and D. S. Darling, Cell-specific phosphorylation of Zfhep transcription factor, Biochem. Biophys. Res. Commun, vol.296, issue.2, pp.368-373, 2002.

M. C. Llorens, G. Lorenzatti, N. L. Cavallo, M. V. Vaglienti, A. P. Perrone et al., Phosphorylation regulates functions of ZEB1 transcription factor, J. Cell. Physiol, vol.231, issue.10, pp.2205-2217, 2016.

P. Zhang, Y. Wei, L. Wang, B. G. Debeb, Y. Yuan et al., ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1, Nat. Cell Biol, vol.16, issue.9, pp.864-875, 2014.

V. M. Díaz, R. Viñas-castells, and A. García-de-herreros, Regulation of the protein stability of EMT transcription factors, Cell Adh. Migr, vol.8, issue.4, pp.418-428, 2014.

M. Xu, C. Zhu, X. Zhao, C. Chen, H. Zhang et al., Atypical ubiquitin E3 ligase complex Skp1-Pam-Fbxo45 controls the core epithelial-to-mesenchymal transition-inducing transcription factors, Oncotarget, vol.6, issue.2, pp.979-994, 2015.

A. Chen, C. S. Wong, M. C. Liu, C. M. House, J. Sceneay et al., The ubiquitin ligase Siah is a novel regulator of Zeb1 in breast cancer, Oncotarget, vol.6, issue.2, pp.862-873, 2015.

H. Wang, Z. Jiang, M. Na, H. Ge, C. Tang et al., PARK2 negatively regulates the metastasis and epithelial-mesenchymal transition of glioblastoma cells via ZEB1, Oncol. Lett, vol.14, issue.3, pp.2933-2939, 2017.

Z. Zhou, P. Zhang, X. Hu, J. Kim, F. Yao et al., USP51 promotes deubiquitination and stabilization of ZEB1, Am. J. Cancer Res, vol.7, issue.10, pp.2020-2031, 2017.

C. F. Abshire, J. L. Carroll, and A. M. Dragoi, FLASH protects ZEB1 from degradation and supports cancer cells' epithelial-to-mesenchymal transition, Oncogenesis, vol.5, issue.8, p.254, 2016.

A. D. Rhim, E. T. Mirek, N. M. Aiello, A. Maitra, J. M. Bailey et al., EMT and dissemination precede pancreatic tumor formation, Cell, vol.148, issue.1-2, pp.349-361, 2012.

X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol.527, issue.7579, pp.525-530, 2015.

A. P. Morel, C. Ginestier, R. M. Pommier, O. Cabaud, E. Ruiz et al., A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability, Nat. Med, vol.23, issue.5, pp.568-578, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788395

S. Imani, H. Hosseinifard, J. Cheng, C. Wei, and J. Fu, Prognostic value of EMT-inducing transcription factors (EMT-TFs) in metastatic breast cancer: a systematic review and meta-analysis, Sci. Rep, vol.6, p.28587, 2016.

M. J. Schliekelman, A. Taguchi, J. Zhu, X. Dai, J. Rodriguez et al., Molecular portraits of epithelial, mesenchymal, and hybrid States in lung adenocarcinoma and their relevance to survival, Cancer Res, vol.75, issue.9, pp.1789-1800, 2015.

M. A. Nieto, R. Y. Huang, R. A. Jackson, and J. P. Thiery, Cell, vol.166, issue.1, pp.21-45, 2016.

A. Grosse-wilde, F. Mcintosh-e,-ertaylan-g,-skupin-a, R. E. Kuestner, K. A. Walters, and S. Huang, Stemness of the hybrid Epithelial/ Mesenchymal state in breast Cancer and its association with poor survival, PLoS One, vol.10, issue.5, p.126522, 2015.

R. Y. Huang, M. K. Wong, T. Z. Tan, K. T. Kuay, A. H. Ng et al., An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530), Cell Death Dis, vol.4, p.915, 2013.

J. Zavadil, M. Bitzer, D. Liang, Y. C. Yang, A. Massimi et al., Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta, Proc Natl Acad Sci U S A, vol.98, issue.12, pp.6686-6691, 2001.

T. Z. Tan, Q. H. Miow, Y. Miki, T. Noda, S. Mori et al., Epithelialmesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients, EMBO Mol. Med, vol.6, issue.10, pp.1279-1293, 2014.

S. Liu, Y. Cong, D. Wang, Y. Sun, L. Deng et al., Seminars in Cancer Biology, vol.58, pp.1-10, 2019.

, mesenchymal states reflective of their normal counterparts, Stem Cell Rep, vol.2, issue.1, pp.78-91, 2013.

J. Dong, Y. Hu, X. Fan, X. Wu, Y. Mao et al., Single-cell RNA-seq analysis unveils a prevalent epithelial/mesenchymal hybrid state during mouse organogenesis, Genome Biol, vol.19, issue.1, p.31, 2018.

S. V. Puram, I. Tirosh, A. S. Parikh, A. P. Patel, K. Yizhak et al., Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck Cancer, Cell, vol.171, issue.7, pp.1611-1624, 2017.

E. Sánchez-tilló, Y. Liu, O. Barrios, L. Siles, L. Fanlo et al., EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness, Cell. Mol. Life Sci, vol.69, issue.20, pp.3429-3456, 2012.

D. Stefania and D. Vergara, The many-faced program of epithelial-mesenchymal transition: a system biology-based view, Front. Oncol, vol.7, p.274, 2017.

S. Singh, D. Howell, N. Trivedi, K. Kessler, T. Ong et al., Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal-epithelial-like transition, Elife, vol.5, p.12717, 2016.

C. Gubelmann, P. C. Schwalie, S. K. Raghav, E. Röder, T. Delessa et al., Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network, Elife, vol.3, p.3346, 2014.

L. Siles, E. Sánchez-tilló, J. W. Lim, D. S. Darling, and K. L. Kroll, Postigo A ZEB1 imposes a temporary stage-dependent inhibition of muscle gene expression and differentiation via CtBP-mediated transcriptional repression, Mol. Cell. Biol, vol.33, issue.7, pp.1368-1382, 2013.

P. B. Gupta, C. M. Fillmore, G. Jiang, S. D. Shapira, K. Tao et al., Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells, Cell, vol.146, issue.4, pp.633-644, 2011.

T. Risom, M. E. Langer, P. M. Chapman, J. Rantala, J. A. Fields et al., Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer, Nature Commun, vol.9, issue.1, p.3815, 2018.

J. P. Couso and P. Patraquim, Classification and function of small open reading frames, Nat. Rev. Mol. Cell Biol, vol.18, issue.9, pp.575-589, 2017.

B. Vanderperre, J. F. Lucier, and X. Roucou, HAltORF: a database of predicted out-offrame alternative open reading frames in human, Database, p.25, 2012.

S. N. Steinway, J. G. Zañudo, P. J. Michel, D. J. Feith, T. P. Loughran et al., Combinatorial interventions inhibit TGF?-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes, NPJ Syst. Biol. Appl, vol.1, p.15014, 2015.