Y. Y. Zhao, D. J. Yan, and Z. W. Chen, Role of AIF-1 in the regulation of inflammatory activation and diverse disease processes, Cell Immunol, vol.284, pp.75-83, 2013.

R. Medzhitov, Origin and physiological roles of inflammation, Nature, vol.454, pp.428-435, 2008.

G. M. Barton, A calculated response: control of inflammation by the innate immune system, J. Clin. Invest, vol.118, pp.413-420, 2008.

U. Utans, R. J. Arceci, Y. Yamashita, and M. E. Russell, Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection, J. Clin. Invest, vol.95, pp.2954-2962, 1995.

M. Kruse, R. Steffen, R. Batel, I. M. Muller, and W. E. Muller, Differential expression of allograft inflammatory factor 1 and of glutathione peroxidase during autoand allograft response in marine sponges, J. Cell Sci, vol.112, pp.4305-4313, 1999.

A. Cuttitta, M. A. Ragusa, S. Costa, C. Bennici, P. Colombo et al., Evolutionary conserved mechanisms pervade structure and transcriptional modulation of allograft inflammatory factor-1 from sea anemone Anemonia viridis, Fish. Shellfish Immunol, vol.67, pp.86-94, 2017.

M. De-zoysa, C. Nikapitiya, Y. Kim, C. Oh, D. H. Kang et al., Allograft infammatory factor-1 in disk abalone (Haliotis discus discus): molecular cloning, transcriptional regulation against immune challenge and tissue injury, Fish. Shellfish Immunol, vol.29, pp.319-326, 2010.

L. Zhang, J. Zhao, C. Li, X. Su, A. Chen et al., Cloning and characterization of allograft inflammatory factor-1 (AIF-1) from Manila clam Venerupis philippinarum, Fish. Shellfish Immunol, vol.30, pp.148-153, 2011.

Y. Zhang, J. Li, F. Yu, X. He, and Z. Yu, Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas, Fish. Shellfish Immunol, vol.34, pp.1071-1077, 2013.

J. Li, J. Chen, Y. Zhang, and Z. Yu, Expression of allograft inflammatory factor-1 (AIF-1) in response to bacterial challenge and tissue injury in the pearl oyster, Pinctada martensii, Fish. Shellfish Immunol, vol.34, pp.365-371, 2013.

J. Wang, H. Zhang, L. Wang, L. Qiu, F. Yue et al., Molecular cloning and transcriptional regulation of an allograft inflammatory factor-1 (AIF-1) in Zhikong scallop Chlamys farreri, Gene, vol.530, pp.178-184, 2013.

L. Martín-g-omez, A. Villalba, M. J. Carballal, and E. Abollo, Molecular characterization of TNF, AIF, dermatopontin and VAMP genes of the flat oyster Ostrea edulis and analysis of their modulation by diseases, Gene, vol.533, pp.208-217, 2014.

T. Xu, J. Xie, B. Zhu, X. Liu, and X. Wu, Allograft inflammatory factor 1 functions as a pro-inflammatory cytokine in the oyster, Crassostrea ariakensis, PLoS One, vol.9, p.95859, 2014.

Q. Li, Z. Bai, L. Zhao, and J. Li, Characterization of allograft inflammatory factor-1 in Hyriopsis cumingii and its expression in response to immune challenge and pearl sac formation, Fish. Shellfish Immunol, vol.59, pp.241-249, 2016.

F. Drago, P. E. Sauti-ere, F. L. Marrec-croq, A. Accorsi, C. Van-camp et al., Microglia of medicinal leech (Hirudo medicinalis) express a specific activation marker homologous to vertebrate ionized calciumbinding adapter molecule 1 (Iba1/alias Aif-1), Dev. Neurobiol, vol.74, pp.987-1001, 2014.

T. Schorn, F. Drago, G. Tettamanti, R. Valvassori, M. De-eguileor et al., Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech, Cell Tissue Res, vol.359, pp.853-864, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02939643

F. Ovando, C. Gimpel, C. Cardenas, M. C. Da-silva, J. De-lorgeril et al., Cloning and expression analysis of allograft inflammatory factor type 1 in coelomocytes of antarctic sea urchin (Sterechinus neumayeri), J. Shellfish Res, vol.31, pp.875-883, 2012.

N. Ji, Y. Chang, C. Zhao, Z. Pang, and Z. He, Cloning and gene expression of allograft inflammatory factor-1 (AIF-1) provide new insights into injury and bacteria response of the sea cucumber Apostichopus japonicus (Selenka, 1867), Fish. Shellfish Immunol, vol.38, pp.400-405, 2014.

F. Ramírez-g-omez and J. E. , García-Arrar as, Echinoderm immunity, I. S. J, vol.7, pp.211-220, 2010.

C. A. Janeway and R. Medzhitov, Innate immune recognition, Ann. Rev. Immunol, vol.20, pp.197-216, 2002.

R. Medzhitov and C. A. Janeway, Decoding the patterns of self and nonself by the innate immune system, Science, vol.296, pp.298-300, 2002.

L. C. Smith and E. H. Davidson, The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes, Immunol. Today, vol.13, pp.356-362, 1992.

L. C. Smith and E. H. Davidson, The echinoderm immune system: characters shared with the vertebrate immune system, and characters arising later in deuterostome phylogeny, Primordial Immunity: Foundations for the Vertebrate Immune System, pp.213-226, 1994.

L. C. Smith, J. P. Rast, V. Brockton, D. P. Terwilliger, S. V. Nair et al., The sea urchin immune system, I. S. J, vol.3, pp.25-39, 2006.

J. Loram, R. Raudonis, J. Chapman, M. Lortie, and A. Bodnar, Sea urchin coelomocytes are resistant to a variety of DNA damaging agents, Aquat. Toxicol, pp.133-138, 2012.

T. Haug, A. K. Kjuul, O. B. Styrvold, E. Sandsdalen, O. M. Olsen et al., Cucumaria frondosa (Holothuroidea), and asterias rubens (asteroidea), Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), vol.81, pp.94-102, 2002.

P. Pagliara and C. Canicatti, Isolation of cytolytic granules from sea urchin amoebocytes, Eur. J. Cell Biol, vol.60, pp.179-184, 1993.

J. E. García-arrar-as, C. Schenk, R. Rodrígues-ramírez, I. I. Torres, G. Valentín et al., Spherulocytes in the echinoderm Holothuria glaberrima and their involvement in intestinal regeneration, Dev. Dynam, vol.235, pp.3259-3267, 2006.

J. E. Miguel-ruiz and J. E. , García-Arrar as, Common cellular events occur during wound healing and organ regeneration in the sea cucumber Holothuria glaberrima, BMC Dev. Biol, vol.7, p.115, 2007.

P. Gerardi, M. Lassegues, and C. Canicatti, Cellular distribution of sea urchin antibacterial activity, Biol. Cell, vol.70, pp.153-157, 1990.

K. Bertheussen and R. Seljelid, Echinoid phagocytes in vitro, Exp. Cell Res, vol.111, pp.401-412, 1978.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C T method, Nat. Protoc, vol.3, pp.1101-1108, 2008.

V. Smith, The Echinoderms, Invertebrate Blood Cell, pp.513-562, 1981.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol, vol.4, pp.406-425, 1987.

J. Felsenstein, Confidence limits on phylogenies: an approach using the bootstrap, vol.39, pp.783-791, 1985.

E. Zuckerkandl and L. Pauling, Evolutionary divergence and convergence in proteins, Evolving Genes and Proteins, pp.97-166, 1965.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

I. Letunic, T. Doerks, and P. Bork, SMART 7: recent updates to the protein domain annotation resource, Nucleic Acids Res, vol.40, pp.302-305, 2012.

F. S. Chia and J. Xing, Echinoderm coelomocytes, a review, Zool. Stud, vol.35, pp.231-254, 1996.

K. A. Coffaro and R. T. Hinegardner, Immune response in the sea urchin Lytechinus pictus, Science, vol.197, pp.1389-1390, 1977.

M. F. Tsan and B. Gao, Heat shock protein and innate immunity, Cell Mol. Immunol, vol.1, pp.274-279, 2004.

L. C. Smith, L. Chang, R. J. Britten, and E. H. Davidson, Sea urchin genes expressed in activated coelomocytes are identified by expressed sequence tags. Complement homologues and other putative immune response genes suggest immune system homology within the deuterostomes, J. Immunol, vol.156, pp.593-602, 1996.

J. P. Rast, Z. Pancer, and E. H. Davidson, New approaches towards an understanding of deuterostome immunity, Curr. Top. Microbiol. Immunol, vol.248, pp.3-16, 2000.

S. V. Nair, H. Valle, P. S. Gross, D. P. Terwilliger, and L. C. Smith, Macroarray analysis of coelomocyte gene expression in response to LPS in the sea urchin. Identification of unexpected immune diversity in an invertebrate, Physiol. Genomics, vol.22, pp.33-47, 2005.

A. J. Majeske, M. Oren, S. Sacchi, and L. C. Smith, Single sea urchin phagocytes express messages of a single sequence from the diverse Sp185/333 gene family in response to bacterial challenge, J. Immunol, vol.193, pp.5678-5688, 2014.

M. B. Mangiaterra and J. R. Silva, Induced inflammatory process in the sea urchin Lytechinus variegatus, Invertebr. Biol, vol.120, pp.178-184, 2001.

C. Castellani, J. P. Rast, and E. H. Davidson, Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening, Development, vol.130, pp.4587-4596, 2003.

G. M. Jones, A. J. Hebda, R. E. Scheibling, and R. J. Miller, Histopathology of the disease causing mass mortality of sea urchins (Strongylocentrotus droebachiensis) in Nova Scotia, J. Invertebr. Pathol, vol.45, pp.260-271, 1985.

W. Lin, H. Zhang, and G. Beck, Phylogeny of natural cytotoxicity: cytotoxic activity of coelomocytes of the purple sea urchin, Arbacia punctulata, J. Exp. Zool, vol.290, pp.741-750, 2001.

W. Lin, S. Grant, and G. Beck, Generation of monoclonal antibodies to coelomocytes of the purple sea urchin Arbacia punctulata: characterization and phenotyping, Dev. Comp. Immunol, vol.31, pp.465-475, 2007.

P. S. Gross, L. A. Clow, and L. C. Smith, SpC3, the complement homologue from the purple sea urchin, Strongylocentrotuspurpuratus, is expressed in two subpopulations of the phagocytic coelomocytes, Immunogenetics, vol.51, pp.1034-1044, 2000.

V. Brockton, J. H. Henson, D. A. Raftos, A. J. Majeske, Y. O. Kim et al., Localization and diversity of 185/333 proteins from the purple sea urchin e unexpected protein-size range and protein expression in a new coelomocyte type, J. Cell Sci, vol.121, pp.339-348, 2008.

L. C. Smith, Innate immune complexity in the purple sea urchin: diversity of the Sp185/333 system, Front. Immunol, vol.3, pp.1-14, 2012.