P. Jaaks and M. Bernasconi, The proprotein convertase furin in tumour progression, Int. J. Cancer, vol.141, pp.654-663, 2017.

N. G. Seidah, The proprotein convertases in health and disease, Qatar Found. Annu. Res. Forum Proc, vol.2012, 2012.

R. Day and M. Salzet, The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system, Neuroendocrinol. Lett, vol.23, pp.447-451, 2002.

P. Duckert, S. Brunak, and N. Blom, Prediction of proprotein convertase cleavage sites, Protein Eng. Des. Sel, vol.17, pp.107-112, 2004.

N. Scamuffa, F. Calvo, M. Chrétien, N. G. Seidah, and A. Khatib, Proprotein convertases: lessons from knockouts, FASEB J, vol.20, pp.1954-1963, 2006.

M. G. Martín, I. Lindberg, R. S. Solorzano-vargas, J. Wang, Y. Avitzur et al., Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort, Gastroenterology, vol.145, pp.138-148, 2013.

M. Marcinkiewicz, bAPP and furin mRNA concentrates in immature senile plaques in the brain of Alzheimer patients, J. Neuropathol. Exp. Neurol, vol.61, pp.815-829, 2002.

A. Khatib, G. Siegfried, M. Chrétien, P. Metrakos, and N. G. Seidah, Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy, Am. J. Pathol, vol.160, pp.1921-1935, 2002.

J. Fu, D. E. Bassi, J. Zhang, T. Li, E. Nicolas et al., , 2012.

, Transgenic overexpression of the proprotein convertase furin enhances skin tumor growth, Neoplasia, vol.14, pp.271-282

D. F. Quail, J. , and J. A. , The microenvironmental landscape of brain tumors, Cancer Cell, vol.31, pp.326-341, 2017.

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz et al., Cancer genome landscapes, Science, vol.339, pp.1546-1558, 2013.

M. M. Gottesman, Mechanisms of cancer drug resistance, Annu. Rev. Med, vol.53, pp.615-627, 2002.

G. Housman, S. Byler, S. Heerboth, K. Lapinska, M. Longacre et al., Drug resistance in cancer: an overview, Cancers (Basel), vol.6, pp.1769-1792, 2014.

C. Holohan, S. Van-schaeybroeck, D. B. Longley, and P. G. Johnston, Cancer drug resistance: an evolving paradigm, Nat. Rev. Cancer, vol.13, pp.714-726, 2013.

V. Thorsson, D. L. Gibbs, S. D. Brown, D. Wolf, D. S. Bortone et al., The immune landscape of cancer, Cancer Genome Atlas Research Network, vol.48, pp.812-830, 2018.

I. Mellman, G. Coukos, and G. Dranoff, Cancer immunotherapy comes of age, Nature, vol.480, pp.480-489, 2011.

M. Duhamel, F. Rodet, A. Murgoci, M. Wisztorski, R. Day et al., Proprotein convertase 1/3 inhibited macrophages: a novel therapeutic based on drone macrophages, EuPA Open Proteom, vol.11, pp.20-22, 2016.

M. Duhamel, M. Rose, F. Rodet, A. N. Murgoci, L. Zografidou et al., Paclitaxel treatment and proprotein convertase 1/3 (PC1/3) knockdown in macrophages is a promising antiglioma strategy as revealed by proteomics and cytotoxicity studies, Mol. Cell. Proteomics, vol.17, pp.1126-1143, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847515

M. Duhamel, F. Rodet, N. Delhem, F. Vanden-abeele, F. Kobeissy et al., Molecular consequences of proprotein convertase 1/3 (PC1/3) inhibition in macrophages for application to cancer immunotherapy: a proteomic study, Mol. Cell. Proteomics, vol.14, pp.2857-2877, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01850616

M. Duhamel, F. Rodet, A. N. Murgoci, R. Desjardins, H. Gagnon et al., The proprotein convertase PC1/3 regulates TLR9 trafficking and the associated signaling pathways, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02940434

S. Refaie, S. Gagnon, H. Gagnon, R. Desjardins, F. D'anjou et al., Disruption of proprotein convertase 1/3 (PC1/3) expression in mice causes innate immune defects and uncontrolled cytokine secretion, J. Biol. Chem, vol.287, pp.14703-14717, 2012.

H. Gagnon, S. Refaie, S. Gagnon, R. Desjardins, M. Salzet et al., Proprotein convertase 1/3 (PC1/3) in the rat alveolar macrophage cell line NR8383: localization, trafficking and effects on cytokine secretion, PLoS ONE, vol.8, 2013.

M. M. Hipp, D. Shepherd, S. Booth, D. Waithe, C. Reis-e-sousa et al., The processed amino-terminal fragment of human TLR7 acts as a chaperone to direct human TLR7 into endosomes, J. Immunol, vol.194, pp.5417-5425, 2015.

N. Ishii, K. Funami, M. Tatematsu, T. Seya, and M. Matsumoto, Endosomal localization of TLR8 confers distinctive proteolytic processing on human myeloid cells, J. Immunol, vol.193, pp.5118-5128, 2014.

J. M. Coppola, M. S. Bhojani, B. D. Ross, and A. Rehemtulla, A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness, Neoplasia, vol.10, pp.363-370, 2008.

F. Couture, F. D'anjou, R. Desjardins, F. Boudreau, and R. Day, Role of proprotein convertases in prostate cancer progression, Neoplasia, vol.14, pp.1032-1042, 2012.

R. Longuespée, F. Couture, C. Levesque, A. Kwiatkowska, R. Desjardins et al., Implications of proprotein convertases in ovarian cancer cell proliferation and tumor progression: insights for PACE4 as a therapeutic target, Transl. Oncol, vol.7, pp.410-419, 2014.

F. Couture, R. Sabbagh, A. Kwiatkowska, R. Desjardins, S. P. Guay et al., PACE4 undergoes an oncogenic alternative splicing switch in cancer, Cancer Res, vol.77, pp.6863-6879, 2017.

C. Levesque, M. Fugère, A. Kwiatkowska, F. Couture, R. Desjardins et al., The Multi-Leu peptide inhibitor discriminates between PACE4 and furin and exhibits antiproliferative effects on prostate cancer cells, J. Med. Chem, vol.55, pp.10501-10511, 2012.

G. L. Becker, Y. Lu, K. Hardes, B. Strehlow, C. Levesque et al., Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases, J. Biol. Chem, vol.287, pp.21992-22003, 2012.

C. Levesque, F. Couture, A. Kwiatkowska, R. Desjardins, B. Guérin et al., PACE4 inhibitors and their peptidomimetic analogs block prostate cancer tumor progression through quiescence induction, increased apoptosis and impaired neovascularisation, Oncotarget, vol.6, pp.3680-3693, 2015.

A. Kwiatkowska, F. Couture, S. Ait-mohand, R. Desjardins, Y. L. Dory et al., Enhanced anti-tumor activity of the Multi-Leu peptide PACE4 inhibitor transformed into an albumin-bound tumor-targeting prodrug, Sci. Rep, vol.9, 2019.

D. E. Bassi, J. Zhang, C. Renner, and A. J. Klein-szanto, Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth, Mol. Carcinog, vol.56, pp.1182-1188, 2017.

S. Fong, L. Mounkes, Y. Liu, M. Maibaum, E. Alonzo et al., Functional identification of distinct sets of antitumor activities mediated by the FKBP gene family, Proc. Natl. Acad. Sci. USA, vol.100, pp.14253-14258, 2003.

E. Le-rhun, M. Duhamel, M. Wisztorski, J. P. Gimeno, F. Zairi et al., Evaluation of nonsupervised MALDI mass spectrometry imaging combined with microproteomics for glioma grade III classification, Biochim. Biophys. Acta. Proteins Proteomics, vol.1865, pp.875-890, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02940640

Y. Li, Z. Basang, H. Ding, Z. Lu, T. Ning et al., Latexin expression is downregulated in human gastric carcinomas and exhibits tumor suppressor potential, BMC Cancer, vol.11, p.121, 2011.

A. Catalano, P. Caprari, S. Moretti, M. Faronato, L. Tamagnone et al., Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function, Blood, vol.107, pp.3321-3329, 2006.

G. Chakraborty, S. Kumar, R. Mishra, T. V. Patil, and G. C. Kundu, , 2012.

, Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model, PLoS ONE, vol.7, p.33633

B. Larrivée, C. Freitas, M. Trombe, X. Lv, B. Delafarge et al., Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis, Genes Dev, vol.21, pp.2433-2447, 2007.

B. Chen, A novel long noncoding RNA lncWDR26 suppresses the growth and metastasis of hepatocellular carcinoma cells through interaction with SIX3, Am. J. Cancer Res, vol.8, pp.688-698, 2018.

B. Fussbroich, N. Wagener, S. Macher-goeppinger, A. Benner, M. Fälth et al., EZH2 depletion blocks the proliferation of colon cancer cells, PLoS ONE, vol.6, p.21651, 2011.

Z. Liu, W. Kuang, Q. Zhou, and Y. Zhang, TGF-b1 secreted by M2 phenotype macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signalling pathway, Int. J. Mol. Med, vol.42, pp.3395-3403, 2018.

F. D'anjou, S. Routhier, J. P. Perreault, A. Latil, D. Bonnel et al., Molecular validation of PACE4 as a target in prostate cancer, Transl. Oncol, vol.4, pp.157-172, 2011.

C. Castillo, L. R. Oancea, A. Stüllein, C. Régnier-vigouroux, and A. , A novel computer-assisted approach to evaluate multicellular tumor spheroid invasion assay, Sci. Rep, vol.6, p.35099, 2016.

A. Mantovani, T. Schioppa, C. Porta, P. Allavena, and A. Sica, Role of tumor-associated macrophages in tumor progression and invasion, Cancer Metastasis Rev, vol.25, pp.315-322, 2006.

C. Hwangbo, N. Tae, S. Lee, O. Kim, O. K. Park et al., Syntenin regulates TGF-b1-induced Smad activation and the epithelial-tomesenchymal transition by inhibiting caveolin-mediated TGF-b type I receptor internalization, Oncogene, vol.35, pp.389-401, 2016.

T. M. Link, U. Park, B. M. Vonakis, D. M. Raben, M. J. Soloski et al., TRPV2 has a pivotal role in macrophage particle binding and phagocytosis, Nat. Immunol, vol.11, pp.232-239, 2010.

F. Zunke, R. , and S. , The shedding protease ADAM17: physiology and pathophysiology, Biochim. Biophys. Acta Mol. Cell Res, vol.1864, issue.11, pp.2059-2070, 2017.

V. M. Ripoll, K. M. Irvine, T. Ravasi, M. J. Sweet, and D. A. Hume, Gpnmb is induced in macrophages by IFN-g and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses, J. Immunol, vol.178, pp.6557-6566, 2007.

X. He, Q. Huang, X. Qiu, X. Liu, G. Sun et al., LAP3 promotes glioma progression by regulating proliferation, migration and invasion of glioma cells, Int. J. Biol. Macromol, vol.72, pp.1081-1089, 2015.

V. Audrito, S. Serra, D. Brusa, F. Mazzola, F. Arruga et al., Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia, Blood, vol.125, pp.111-123, 2015.

M. K. Hassan, D. Kumar, M. Naik, and M. Dixit, The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers, PLoS ONE, vol.13, 2018.

H. Arai, H. Ikota, K. Sugawara, S. Nobusawa, J. Hirato et al., Nestin expression in brain tumors: its utility for pathological diagnosis and correlation with the prognosis of high-grade gliomas, Brain Tumor Pathol, vol.29, pp.160-167, 2012.

M. E. Beckner, W. Fellows-mayle, Z. Zhang, N. R. Agostino, J. A. Kant et al., Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas, Int. J. Cancer, vol.126, pp.2282-2295, 2010.

Z. Xu, N. Joshi, A. Agarwal, S. Dahiya, P. Bittner et al., Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest, J. Neurooncol, vol.108, pp.59-67, 2012.

S. Zandi, S. Nakao, K. H. Chun, P. Fiorina, D. Sun et al., ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration, Cell Rep, vol.10, pp.1173-1186, 2015.

R. Ono, T. Kaisho, and T. Tanaka, PDLIM1 inhibits NF-kB-mediated inflammatory signaling by sequestering the p65 subunit of NF-kB in the cytoplasm, Sci. Rep, vol.5, p.18327, 2015.

Y. Qi and R. Xu, Roles of PLODs in collagen synthesis and cancer progression. Front, Cell Dev. Biol, vol.6, p.66, 2018.

Y. Li, W. Li, Y. Yang, Y. Lu, C. He et al., MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme, Brain Res, vol.1286, pp.13-18, 2009.

N. Brösicke and A. Faissner, Role of tenascins in the ECM of gliomas, Cell Adhes. Migr, vol.9, pp.131-140, 2015.

H. Wu and R. M. Siegel, Progranulin resolves inflammation, Science, vol.332, pp.427-428, 2011.

B. Giri, V. D. Dixit, M. C. Ghosh, G. D. Collins, I. U. Khan et al., CXCL12-induced partitioning of flotillin-1 with lipid rafts plays a role in CXCR4 function, Eur. J. Immunol, vol.37, pp.2104-2116, 2007.

M. Yang, J. Liu, C. Piao, J. Shao, and J. Du, ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis, Cell Death Dis, vol.6, p.1780, 2015.

P. Starokadomskyy, N. Gluck, H. Li, B. Chen, M. Wallis et al., CCDC22 deficiency in humans blunts activation of proinflammatory NF-kB signaling, J. Clin. Invest, vol.123, pp.2244-2256, 2013.

Y. J. Chen, M. Y. Hsieh, M. Y. Chang, H. C. Chen, M. S. Jan et al., Eps8 protein facilitates phagocytosis by increasing TLR4-MyD88 protein interaction in lipopolysaccharide-stimulated macrophages, J. Biol. Chem, vol.287, pp.18806-18819, 2012.

E. L. Mills, B. Kelly, A. Logan, A. S. Costa, M. Varma et al., Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages, Cell, vol.167, pp.457-470, 2016.

, www.moleculartherapy.org Molecular Therapy: Oncolytics, vol.17, 2020.

J. B. Hsu, T. H. Chang, G. A. Lee, T. Y. Lee, C. et al., Identification of potential biomarkers related to glioma survival by gene expression profile analysis, BMC Med. Genomics, vol.11, issue.7, p.34, 2019.

H. S. Friedman, T. Kerby, and H. Calvert, Temozolomide and treatment of malignant glioma, Clin. Cancer Res, vol.6, pp.2585-2597, 2000.

J. R. Wi-sniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat. Methods, vol.6, pp.359-362, 2009.

J. R. Wi-sniewski, Filter-aided sample preparation: the versatile and efficient method for proteomic analysis, Methods Enzymol, vol.585, pp.15-27, 2017.

J. R. Wi-sniewski, Quantitative evaluation of filter aided sample preparation (FASP) and multienzyme digestion FASP protocols, Anal. Chem, vol.88, pp.5438-5443, 2016.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

S. Tyanova, T. Temu, and J. Cox, The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc, vol.11, pp.2301-2319, 2016.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, J. V. Olsen et al., Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res, vol.10, pp.1794-1805, 2011.

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, N. Nagaraj et al., , 2014.

, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteomics, vol.13, pp.2513-2526

S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M. Y. Hein et al., The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Methods, vol.13, pp.731-740, 2016.

A. Yuryev, E. Kotelnikova, and N. Daraselia, Ariadne's ChemEffect and Pathway Studio knowledge base, Expert Opin. Drug Discov, vol.4, pp.1307-1318, 2009.

J. Quanico, L. Hauberg-lotte, S. Devaux, Z. Laouby, C. Meriaux et al., 3D MALDI mass spectrometry imaging reveals specific localization of long-chain acylcarnitines within a 10-day time window of spinal cord injury, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02940797

K. Mallah, J. Quanico, D. Trede, F. Kobeissy, K. Zibara et al., Lipid changes associated with traumatic brain injury revealed by 3D MALDI-MSI, Anal. Chem, vol.90, pp.10568-10576, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02940820

O. Jardin-mathé, D. Bonnel, J. Franck, M. Wisztorski, E. Macagno et al., MITICS (MALDI Imaging Team Imaging Computing System): a new open source mass spectrometry imaging software, J. Proteomics, vol.71, pp.332-345, 2008.