J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell, vol.139, issue.5, pp.871-890, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02912716

A. Nassar, A. Radhakrishnan, I. A. Cabrero, G. A. Cotsonis, and C. Cohen, Intratumoral heterogeneity of immunohistochemical marker expression in breast carcinoma: a tissue microarray-based study, Appl. Immunohistochem. Mol. Morphol, vol.18, issue.5, pp.433-441, 2010.

T. Celià-terrassa, O. Meca-cortés, F. Mateo, A. M. Paz, N. Rubio et al., Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells, J. Clin. Invest, vol.122, issue.5, pp.1849-1868, 2012.

M. Yu, A. Bardia, B. S. Wittner, S. L. Stott, M. E. Smas et al.,

E. Sequist, D. Brachtel, J. Sgroi, S. Baselga, M. Ramaswamy et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition, Science, vol.339, pp.580-584, 2013.

A. Gradilone, C. Raimondi, C. Nicolazzo, A. Petracca, O. Gandini et al., Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal, J. Cell. Mol. Med, vol.15, issue.5, pp.1066-1070, 2011.

S. Wu, S. Liu, Z. Liu, J. Huang, X. Pu et al., Classification of circulating tumor cells by epithelial-mesenchymal transition markers, PLoS One, vol.10, issue.4, p.123976, 2015.

S. De-wit, G. Van-dalum, A. T. Lenferink, A. G. Tibbe, T. J. Hiltermann et al., The detection of EpCAM(+) and EpCAM(?) circulating tumor cells, Sci. Rep, vol.5, p.12270, 2015.

E. A. Punnoose, S. K. Atwal, J. M. Spoerke, H. Savage, A. Pandita et al., Molecular biomarker analyses using circulating tumor cells, PLoS One, vol.5, issue.9, p.12517, 2010.

T. Yokobori, H. Iinuma, T. Shimamura, S. Imoto, K. Sugimachi et al., Plastin3 is a novel marker for circulating tumor cells undergoing the epithelial-mesenchymal transition and is associated with colorectal cancer prognosis, Cancer Res, vol.73, issue.7, pp.2059-2069, 2013.

J. H. Tsai, J. L. Donaher, D. A. Murphy, S. Chau, and J. Yang, Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis, Cancer Cell, vol.22, issue.6, pp.725-736, 2012.

T. Brabletz, To differentiate or not-routes towards metastasis, Nat. Rev. Cancer, vol.12, issue.6, pp.425-436, 2012.

A. D. Rhim, E. T. Mirek, N. M. Aiello, A. Maitra, J. M. Bailey et al., EMT and dissemination precede pancreatic tumor formation, Cell, vol.148, issue.1-2, pp.349-361, 2012.

C. Foroni, M. Broggini, D. Generali, and G. Damia, Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact, Cancer Treat Rev, vol.38, issue.6, pp.689-697, 2012.

M. Sato, D. S. Shames, and Y. Hasegawa, Emerging evidence of epithelial-tomesenchymal transition in lung carcinogenesis, Respirology, vol.17, issue.7, pp.1048-1059, 2012.

D. Vergara, B. Merlot, J. P. Lucot, P. Collinet, D. Vinatier et al., Epithelial-mesenchymal transition in ovarian cancer, Cancer Lett, vol.291, issue.1, pp.59-66, 2010.

J. T. Nauseef and M. D. Henry, Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle?, Nat. Rev. Urol, vol.8, issue.8, pp.428-439, 2011.

O. O. Ogunwobi and C. Liu, Therapeutic and prognostic importance of epithelialmesenchymal transition in liver cancers: insights from experimental models, Crit. Rev. Oncol. Hematol, vol.83, issue.3, pp.319-328, 2012.

W. L. Tam, H. Lu, J. Buikhuisen, B. S. Soh, E. Lim et al., Protein kinase C a is a central signaling node and therapeutic target for breast cancer stem cells, Cancer Cell, vol.24, issue.3, pp.347-364, 2013.

M. D. Bullock, A. E. Sayan, G. K. Packham, and A. H. Mirnezami, MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progressiono, Biol. Cell, vol.104, issue.1, pp.3-12, 2012.

S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2, Genes Dev, vol.22, issue.7, pp.894-907, 2008.

E. L. Paterson, J. Kazenwadel, A. G. Bert, Y. Khew-goodall, A. Ruszkiewicz et al., Down-regulation of the miRNA-200 family at the invasive front of colorectal cancers with degraded basement membrane indicates EMT is involved in cancer progression, Neoplasia, vol.15, issue.2, pp.180-191, 2013.

Y. Peng, Y. M. Liu, L. C. Li, L. L. Wang, and X. L. Wu, microRNA-503 inhibits gastric cancer cell growth and epithelial-to-mesenchymal transition, Oncol. Lett, vol.7, issue.4, pp.1233-1238, 2014.

A. Parikh, C. Lee, P. Joseph, S. Marchini, A. Baccarini et al., microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition, Nat. Commun, vol.7, issue.5, p.2977, 2014.

J. Cai, H. Guan, L. Fang, Y. Yang, X. Zhu et al., MicroRNA-374a activates Wnt/b-catenin signaling to promote breast cancer metastasis, J. Clin. Invest, vol.123, issue.2, pp.566-579, 2013.

Y. Jing, Z. Han, S. Zhang, Y. Liu, and L. Wei, Epithelial-mesenchymal transition in tumor microenvironment, Cell Biosci, vol.1, issue.1, p.29, 2011.

Y. Jung, J. K. Kim, Y. Shiozawa, J. Wang, A. Mishra et al., Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis, Nat. Commun, vol.4, p.1795, 2013.

K. Zhang, C. A. Corsa, S. M. Ponik, J. L. Prior, D. Piwnica-worms et al., The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis, Nat. Cell Biol, vol.15, issue.6, pp.677-687, 2013.

M. Labelle, S. Begum, and R. O. Hynes, Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis, Cancer Cell, vol.20, issue.5, pp.576-590, 2011.

S. Giampieri, C. Manning, S. Hooper, L. Jones, C. S. Hill et al., Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility, Nat. Cell Biol, vol.11, issue.11, pp.1287-1296, 2009.

R. C. Souza, A. M. Knittle, N. Nagaraj, M. Van-dinther, C. Choudhary et al., Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-b, Sci. Signal, vol.7, p.5, 2014.

T. Tanahashi, S. Osada, A. Yamada, J. Kato, K. Yawata et al., Extracellular signal-regulated kinase and Akt activation play a critical role in the process of hepatocyte growth factor-induced epithelial-mesenchymal transition, Int. J. Oncol, vol.42, issue.2, pp.556-564, 2013.

L. Xie, B. K. Law, A. M. Chytil, K. A. Brown, M. E. Aakre et al., Moses, ation of the Erk pathway is required for TGF-beta1-induced EMT in vitro, Neoplasia, vol.6, pp.603-610, 2004.

D. Vergara, C. M. Valente, A. Tinelli, C. Siciliano, V. Lorusso et al., Resveratrol inhibits the epidermal growth factor-induced epithelial mesenchymal transition in MCF-7 cells, Cancer Lett, vol.310, issue.1, pp.1-8, 2011.

M. B. Weiss, E. V. Abel, M. M. Mayberry, K. J. Basile, A. C. Berger et al., TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells, Cancer Res, vol.72, pp.6382-6392, 2012.

B. P. Zhou, J. Deng, W. Xia, J. Xu, Y. M. Li et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelialmesenchymal transition, Nat. Cell Biol, vol.6, issue.10, pp.931-940, 2004.

D. Iliopoulos, C. Polytarchou, M. Hatziapostolou, F. Kottakis, I. G. Maroulakou et al., MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells, Sci. Signal, vol.2, p.62, 2009.

S. J. Grille, A. Bellacosa, J. Upson, A. J. Klein-szanto, F. Van-roy et al., The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines, Cancer Res, vol.63, issue.9, pp.2172-2178, 2003.

M. Jiao and K. J. Nan, Activation of PI3 kinase/Akt/HIF-1a pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma, Int. J. Oncol, vol.40, issue.2, pp.461-468, 2012.

A. Vichalkovski, E. Gresko, D. Hess, D. F. Restuccia, and B. A. Hemmings, PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage, Oncogene, vol.29, pp.3554-3565, 2010.

S. Julien, I. Puig, E. Caretti, J. Bonaventure, L. Nelles et al., Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition, Oncogene, vol.26, issue.53, pp.7445-7456, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00235814

J. I. Yook, X. Y. Li, I. Ota, E. R. Fearon, and S. J. Weiss, Wnt-dependent regulation of the E-cadherin repressor snail, J. Biol. Chem, vol.280, pp.11740-11748, 2005.

Z. Q. Wu, X. Y. Li, C. Y. Hu, M. Ford, C. G. Kleer et al., Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast cancer 1, early onset (BRCA1) repression, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.16654-16659, 2012.

Y. W. Chang, Y. J. Su, M. Hsiao, K. C. Wei, W. H. Lin et al., Diverse targets of b-catenin during the epithelial-mesenchymal transition define cancer stem cells and predict disease relapse, Cancer Res, vol.75, issue.16, pp.3398-3410, 2015.

T. Iwata-kajihara, H. Sumimoto, N. Kawamura, R. Ueda, T. Takahashi et al., Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors, J. Immunol, vol.187, issue.1, pp.27-36, 2011.

T. Yaguchi, Y. Goto, K. Kido, H. Mochimaru, T. Sakurai et al., Immune suppression and resistance mediated by constitutive activation of Wnt/b-catenin signaling in human melanoma cells, J. Immunol, vol.189, issue.5, pp.2110-2117, 2012.

D. Oosterhoff, S. Lougheed, R. Van-de-ven, J. Lindenberg, H. Van-cruijsen et al., Tumor-mediated inhibition of human dendritic cell differentiation and function is consistently counteracted by combined p38 MAPK and STAT3 inhibition, Oncoimmunology, vol.1, issue.5, pp.649-658, 2012.

A. López-soto, L. H. Zapico, A. Acebes-huerta, L. Rodrigo, and S. Gonzalez, Regulation of NKG2D signaling during the epithelial-to-mesenchymal transition, Oncoimmunology, vol.2, issue.9, p.25820, 2013.

R. Lemaire, A. Desmons, J. C. Tabet, R. Day, M. Salzet et al., Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections, J. Proteome Res, vol.6, issue.4, pp.1295-1305, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167250

R. Longuespée, C. Boyon, C. Castellier, A. Jacquet, A. Desmons et al., The C-terminal fragment of the immunoproteasome PA28S (Reg alpha) as an early diagnosis and tumorrelapse biomarker: evidence from mass spectrometry profiling, Histochem. Cell Biol, vol.138, issue.1, pp.141-154, 2012.

T. J. Dekker, B. D. Balluff, E. A. Jones, C. D. Schöne, M. Schmitt et al., Multicenter matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) identifies proteomic differences in breast-cancerassociated stroma, J. Proteome Res, vol.13, issue.11, pp.4730-4738, 2014.

X. H. Chen, Z. C. Liu, G. Zhang, W. Wei, X. X. Wang et al., TGF-b and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells, Mol. Immunol, vol.65, issue.1, pp.34-42, 2015.

C. Royer and X. Lu, Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ, vol.18, pp.1470-1477, 2011.

C. T. Leung and J. S. Brugge, Outgrowth of single oncogene-expressing cells from suppressive epithelial environments, Nature, vol.482, pp.410-413, 2012.

A. Jeanes, C. J. Gottardi, and A. S. Yap, Cadherins and cancer: how does cadherin dysfunction promote tumor progression?, Oncogene, vol.27, pp.6920-6929, 2008.

F. C. Geyer, M. Lacroix-triki, K. Savage, M. Arnedos, M. B. Lambros et al., Reis-Filho, b-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation, Mod. Pathol, vol.24, issue.2, pp.209-231, 2011.

H. Zhang, J. Liu, D. Yue, L. Gao, D. Wang et al., Clinical significance of E-cadherin, b-catenin, vimentin and S100A4 expression in completely resected squamous cell lung carcinoma, J. Clin. Pathol, vol.66, issue.11, pp.937-945, 2013.

J. Kaur, M. Sawhney, S. Dattagupta, N. K. Shukla, A. Srivastava et al., Clinical significance of altered expression of b-catenin and Ecadherin in oral dysplasia and cancer: potential link with ALCAM expression, PLoS One, vol.8, issue.6, p.67361, 2013.

X. L. Xu, Z. Q. Ling, S. Z. Chen, B. Li, W. H. Ji et al., The impact of E-cadherin expression on the prognosis of esophageal cancer: a meta-analysis, Dis. Esophagus, vol.27, issue.1, pp.79-86, 2014.

Y. Li, C. Q. Chen, Y. L. He, S. R. Cai, D. J. Yang et al., Abnormal expression of E-cadherin in tumor cells is associated with poor prognosis of gastric carcinoma, J. Surg. Oncol, vol.106, issue.3, pp.304-310, 2012.

L. Fu, T. Qin, J. He, J. Qin, J. Hong et al., The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis, Cell Res, vol.21, issue.2, pp.275-289, 2011.

G. Moreno-bueno, E. Cubillo, D. Sarrió, H. Peinado, S. M. Rodríguez-pinilla et al., Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition, Cancer Res, vol.66, pp.9543-9556, 2006.

D. D. Tran, C. A. Corsa, H. Biswas, R. L. Aft, and G. D. Longmore, Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence, Mol. Cancer Res, vol.9, pp.1644-1657, 2011.

S. Dubois-marshall, J. S. Thomas, D. Faratian, D. J. Harrison, and E. Katz, Two possible mechanisms of epithelial to mesenchymal transition in invasive ductal breast cancer, Clin. Exp. Metastasis, vol.28, issue.8, pp.811-818, 2011.

J. Caramel, E. Papadogeorgakis, L. Hill, G. J. Browne, G. Richard et al., A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma, Cancer Cell, vol.24, issue.4, pp.466-480, 2013.

W. R. Luo, S. Y. Li, L. M. Cai, and K. T. Yao, High expression of nuclear Snail, but not cytoplasmic staining, predicts poor survival in nasopharyngeal carcinoma, Ann. Surg. Oncol, vol.19, issue.9, pp.2971-2979, 2012.

S. Muenst, S. Däster, E. C. Obermann, R. A. Droeser, W. P. Weber et al., Nuclear expression of snail is an independent negative prognostic factor in human breast cancer, Dis. Markers, vol.35, issue.5, pp.337-344, 2013.

A. Jouppila-mättö, M. Närkiö-mäkelä, Y. Soini, M. Pukkila, R. Sironen et al., Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression, BMC Cancer, vol.11, p.350, 2011.

D. Gasparotto, J. Polesel, A. Marzotto, R. Colladel, S. Piccinin et al., Overexpression of TWIST2 correlates with poor prognosis in head and neck squamous cell carcinomas, Oncotarget, vol.2, pp.1165-1175, 2011.

S. D. Silva, M. A. Alaoui-jamali, F. A. Soares, D. M. Carraro, H. P. Brentani et al., TWIST1 is a molecular marker for a poor prognosis in oral cancer and represents a potential therapeutic target, Cancer, 2013.

I. Gomez, C. Peña, M. Herrera, C. Muñoz, M. J. Larriba et al., TWIST1 is expressed in colorectal carcinomas and predicts patient survival, PLoS One, vol.6, issue.3, p.18023, 2011.

A. Wushou, J. Hou, Y. J. Zhao, and Z. M. Shao, Twist-1 up-regulation in carcinoma correlates to poor survival, Int. J. Mol. Sci, vol.15, pp.21621-21630, 2014.

A. Jouppila-mättö, M. Närkiö-mäkelä, Y. Soini, M. Pukkila, R. Sironen et al., Twist and snai1 expression in pharyngeal squamous cell carcinoma stroma is related to cancer progression, BMC Cancer, vol.11, p.350, 2011.

U. Cavallaro and G. Christofori, Cell adhesion and signalling by cadherins and Ig-CAMs in cancer, Nat. Rev. Cancer, vol.4, issue.2, pp.118-132, 2004.

X. Qian, A. Anzovino, S. Kim, K. Suyama, J. Yao et al., N-cadherin/FGFR promotes metastasis through epithelial-tomesenchymal transition and stem/progenitor cell-like properties, Oncogene, vol.33, pp.3411-3421, 2014.

L. Hui, S. Zhang, X. Dong, D. Tian, Z. Cui et al., Prognostic significance of twist and N-cadherin expression in NSCLC, PLoS One, vol.8, issue.4, p.62171, 2013.

I. Lascombe, A. Clairotte, S. Fauconnet, S. Bernardini, H. Wallerand et al., N-cadherin as a novel prognostic marker of progression in superficial urothelial tumors, Clin. Cancer Res, vol.12, issue.9, pp.2780-2787, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00484920

D. I. Domenico, M. , G. M. Pierantoni, A. Feola, F. Esposito et al., Prognostic significance of N-cadherin expression in oral squamous cell carcinoma, Anticancer Res, vol.31, pp.4211-4218, 2011.

D. Vergara, F. Chiriacò, R. Acierno, and M. Maffia, Proteomic map of peripheral blood mononuclear cells, Proteomics, vol.8, issue.10, pp.2045-2051, 2008.

S. Singh, S. Sadacharan, S. Su, A. Belldegrun, S. Persad et al., Overexpression of vimentin: role in the invasive phenotype in an androgenindependent model of prostate cancer, Cancer Res, vol.63, issue.9, pp.2306-2311, 2003.

V. Vasko, A. V. Espinosa, W. Scouten, H. He, H. Auer et al., Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion, Proc. Natl. Acad. Sci. U. S. A, vol.104, issue.8, pp.2803-2808, 2007.

R. A. Craven, A. J. Stanley, S. Hanrahan, J. Dods, R. Unwin et al., Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma, Proteomics, vol.6, issue.9, pp.2853-2864, 2006.

M. Wu, X. Bai, G. Xu, J. Wei, T. Zhu et al., Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression, Proteomics, vol.7, issue.12, pp.1973-1983, 2007.

M. E. Ayed, D. Bonnel, R. Longuespée, C. Castelier, J. Franck et al., MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers, Med. Sci. Monit, vol.16, issue.8, pp.233-278, 2010.

S. Otsuki, M. Inokuchi, M. Enjoji, T. Ishikawa, Y. Takagi et al., Vimentin expression is associated with decreased survival in gastric cancer, Oncol. Rep, vol.25, issue.5, pp.1235-1242, 2011.

A. Satelli and S. Li, Vimentin in cancer and its potential as a molecular target for cancer therapy, Cell. Mol. Life Sci, vol.68, issue.18, pp.3033-3046, 2011.

L. K. Liu, X. Y. Jiang, X. X. Zhou, D. M. Wang, X. L. Song et al., Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome, Mod. Pathol, vol.23, issue.2, pp.213-224, 2010.

N. Yamashita, E. Tokunaga, H. Kitao, Y. Hisamatsu, K. Taketani et al., Vimentin as a poor prognostic factor for triple-negative breast cancer, J. Cancer Res. Clin. Oncol, vol.139, issue.5, pp.739-746, 2013.

P. Karihtala, P. Auvinen, S. Kauppila, K. M. Haapasaari, A. Jukkola-vuorinen et al., Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basallike breast cancers: association with an aggressive tumour phenotype, Breast Cancer Res. Treat, vol.138, issue.1, pp.81-90, 2013.

F. Richardson, G. D. Young, R. Sennello, J. Wolf, G. M. Argast et al., The evaluation of E-Cadherin and vimentin as biomarkers of clinical outcomes among patients with non-small cell lung cancer treated with erlotinib as second-or third-line therapy, Anticancer Res, vol.32, issue.2, pp.537-552, 2012.

P. J. Johnson, W. M. Melia, M. K. Palmer, B. Portmann, and R. Williams, Relationship between serum alpha-foetoprotein, cirrhosis and survival in hepatocellular carcinoma, Br. J. Cancer, vol.44, issue.4, pp.502-505, 1981.

K. Kojima, A. Takata, C. Vadnais, M. Otsuka, T. Yoshikawa et al.,

A. Omata, K. Nepveu, and . Koike, MicroRNA122 is a key regulator of a-fetoprotein expression and influences the aggressiveness of hepatocellular carcinoma, Nat. Commun, vol.2, p.338, 2011.

W. C. Tsai, S. D. Hsu, C. S. Hsu, T. C. Lai, S. J. Chen et al., MicroRNA-plays a critical role in liver homeostasis and hepatocarcinogenesis, J. Clin. Invest, vol.122, issue.8, pp.2884-2897, 2012.

S. Sun, R. T. Poon, N. P. Lee, C. Yeung, K. L. Chan et al., Proteomics of hepatocellular carcinoma: serum vimentin as a surrogate marker for small tumors (< or = 2 cm), J. Proteome Res, vol.9, issue.4, pp.1923-1930, 2010.

D. W. Kufe, Mucins in cancer: function, prognosis and therapy, Nat. Rev. Cancer, vol.9, pp.874-885, 2009.

R. C. Bast, T. L. Klug, E. St-john, E. Jenison, J. M. Niloff et al., A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer, N. Engl. J. Med, vol.309, pp.883-887, 1983.

V. R. Zurawski, R. C. Knapp, N. Einhorn, P. Kenemans, R. Mortel et al., An initial analysis of preoperative serum CA 125 levels in patients with early stage ovarian carcinoma, Gynecol. Oncol, vol.30, issue.1, pp.7-14, 1988.

C. Thériault, M. Pinard, M. Comamala, M. Migneault, J. Beaudin et al., MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis6 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis, Gynecol. Oncol, vol.121, issue.3, pp.434-443, 2011.

R. W. Tothill, A. V. Tinker, J. George, R. Brown, S. B. Fox et al., Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome, Clin. Cancer Res, vol.14, issue.16, pp.5198-5208, 2008.

A. S. Mall, Analysis of mucins: role in laboratory diagnosis, J. Clin. Pathol, vol.1, issue.9, pp.1018-1024, 2008.

S. Wang, X. Chen, and M. Tang, Quantitative assessment of the diagnostic role of MUC1 in pancreatic ductal adenocarcinoma, Tumour Biol, vol.35, issue.9, pp.9101-9109, 2014.

L. D. Roy, M. Sahraei, D. B. Subramani, D. Besmer, S. Nath et al., MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition, Oncogene, vol.30, pp.1449-1459, 2011.

H. Rajabi, M. Alam, H. Takahashi, A. Kharbanda, M. Guha et al., MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition, Oncogene, vol.33, pp.1680-1689, 2014.

P. Gold and S. O. Freedman, Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and adsorption techniques, J. Exp. Med, vol.121, issue.1, pp.439-462, 1965.

N. Beauchemin and A. Arabzadeh, Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis, Cancer Metastasis Rev, vol.32, pp.643-671, 2013.

S. Hammarström, The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues, Semin. Cancer Biol, vol.9, issue.2, pp.67-81, 1999.

J. Chen, Q. Li, Y. An, N. Lv, X. Xue et al., CEACAM6 induces epithelial-mesenchymal transition and mediates invasion and metastasis in pancreatic cancer, Int. J. Oncol, vol.43, issue.3, pp.877-885, 2013.

S. Saadatmand, E. M. De-kruijf, A. Sajet, N. G. Dekker-ensink, J. G. Van-nes et al., Expression of cell adhesion molecules and prognosis in breast cancer, Br. J. Surg, vol.100, issue.2, pp.252-260, 2013.

S. A. Whelan, J. He, M. Lu, P. Souda, R. E. Saxton et al., Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid, J. Proteome Res, vol.11, issue.10, pp.5034-5045, 2012.

R. A. Mathias, B. Wang, H. Ji, E. A. Kapp, R. L. Moritz et al., Secretome-based proteomic profiling of Ras-transformed MDCK cells reveals extracellular modulators of epithelial-mesenchymal transition, J. Proteome Res, vol.8, issue.6, pp.2827-2837, 2009.

C. H. Schrader, M. Kolb, K. Zaoui, C. Flechtenmacher, N. Grabe et al., Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients, Mol. Cancer, vol.14, issue.1, p.107, 2015.

S. Thomson, F. Petti, I. Sujka-kwok, P. Mercado, J. Bean et al., A systems view of epithelialmesenchymal transition signaling states, Clin. Exp. Metastasis, vol.28, issue.2, pp.137-155, 2011.

J. Farrell, C. Kelly, J. Rauch, K. Kida, A. García-muñoz et al., HGF induces epithelial-to-mesenchymal transition by modulating the mammalian hippo/MST2 and ISG15 pathways, J. Proteome Res, vol.13, issue.6, pp.2874-2886, 2014.

K. R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance, Nature, 2015.

X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, 2015.

Y. Kim, D. Han, H. Min, J. Jin, E. C. Yi et al., Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines, Mol. Cells, vol.37, pp.888-898, 2014.

J. He, S. A. Whelan, M. Lu, D. Shen, D. U. Chung et al., Proteomic-based biosignatures in breast cancer classification and prediction of therapeutic response, Int. J. Proteomics, p.896476, 2011.

D. Vergara, P. Simeone, P. Boccio, C. Toto, D. Pieragostino et al., Comparative proteome profiling of breast tumor cell lines by gel electrophoresis and mass spectrometry reveals an epithelial mesenchymal transition associated protein signature, Mol. Biosyst, vol.9, issue.6, pp.1127-1138, 2013.

M. Sobral-leite, J. Wesseling, V. T. Smit, H. Nevanlinna, M. H. Van-miltenburg et al.,

M. Figueroa, J. Sherman, A. Lissowska, V. Mannermaa, V. M. Kataja et al., kConFab/AOCS Investigators

C. Olson, D. Vachon, H. Visscher, K. Brenner, V. Butterbach et al., Annexin A1 expression in a pooled breast cancer series: association with tumor subtypes and prognosis, BMC Med, vol.13, p.156, 2015.

R. T. Lawrence, E. M. Perez, D. Hernández, C. P. Miller, K. M. Haas et al., The proteomic landscape of triple-negative breast cancer, Cell Rep, vol.11, issue.4, pp.630-644, 2015.

D. Vergara, P. Simeone, D. Latorre, F. Cascione, S. Leporatti et al., Proteomics analysis of E-cadherin knockdown in epithelial breast cancer cells, J. Biotechnol, vol.202, pp.3-11, 2015.

Z. Guo, L. J. Neilson, H. Zhong, P. S. Murray, S. Zanivan et al., Zaidel-Bar, E-cadherin interactome complexity and robustness resolved by quantitative proteomics, Sci. Signal, vol.7, p.7, 2014.

T. Z. Tan, Q. H. Miow, Y. Miki, T. Noda, S. Mori et al., Epithelialmesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients, EMBO Mol. Med, vol.6, issue.10, pp.1279-1293, 2014.

M. Sjöström, R. Ossola, T. Breslin, O. Rinner, L. Malmström et al., A Combined shotgun and targeted mass spectrometry strategy for breast cancer biomarker discovery, J. Proteome Res, vol.14, issue.7, pp.2807-2818, 2015.

K. P. Law and Y. P. Lim, Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring, Expert Rev. Proteomics, vol.10, issue.6, pp.551-566, 2013.

R. Bruderer, O. M. Bernhardt, T. Gandhi, S. M. Miladinovi-c, L. Y. Cheng et al., Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues, Mol. Cell. Proteomics, vol.14, issue.5, pp.1400-1410, 2015.