J. W. Rowland, G. W. Hawryluk, B. Kwon, and M. G. Fehlings, Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon, Neurosurg Focus, vol.25, p.2, 2008.

B. A. Kakulas, A review of the neuropathology of human spinal cord injury with emphasis on special features, J Spinal Cord Med, vol.22, pp.119-124, 1999.

B. K. Kwon, W. Tetzlaff, J. N. Grauer, J. Beiner, and A. R. Vaccaro, Pathophysiology and pharmacologic treatment of acute spinal cord injury, Spine J, vol.4, pp.451-464, 2004.

M. D. Norenberg, J. Smith, and A. Marcillo, The pathology of human spinal cord injury: defining the problems, J Neurotrauma, vol.21, pp.429-440, 2004.

M. T. Fitch and J. Silver, CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure, Exp Neurol, vol.209, pp.294-301, 2008.

K. Y. Ha and Y. H. Kim, Neuroprotective effect of moderate epidural hypothermia after spinal cord injury in rats. Spine (Phila Pa, vol.33, pp.2059-2065, 1976.

W. B. Cafferty, Chondroitinase ABC-mediated plasticity of spinal sensory function, J Neurosci, vol.28, pp.11998-12009, 2008.

C. M. Galtrey, R. A. Asher, F. Nothias, and J. W. Fawcett, Promoting plasticity in the spinal cord with chondroitinase improves functional recovery after peripheral nerve repair, Brain, vol.130, pp.926-939, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00181430

C. M. Galtrey and J. W. Fawcett, The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system, Brain Res Rev, vol.54, pp.1-18, 2007.

M. S. Andrade, L. M. Mendonca, and G. Chadi, Treadmill running protects spinal cord contusion from secondary degeneration, Brain Res, vol.1346, pp.266-278, 2010.

D. Cizkova, Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat, Cell Mol Neurobiol, vol.29, pp.999-1013, 2009.

S. Thuret, L. D. Moon, and F. H. Gage, Therapeutic interventions after spinal cord injury, Nat Rev Neurosci, vol.7, pp.628-643, 2006.

D. Gupta, C. H. Tator, and M. S. Shoichet, Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord, Biomaterials, vol.27, pp.2370-2379, 2006.

A. Jain, Y. T. Kim, R. J. Mckeon, and R. V. Bellamkonda, In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury, Biomaterials, vol.27, pp.497-504, 2006.

J. Piantino, J. A. Burdick, D. Goldberg, R. Langer, and L. I. Benowitz, An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury, Exp Neurol, vol.201, pp.359-367, 2006.

D. F. Williams, On the nature of biomaterials, Biomaterials, vol.30, pp.5897-5909, 2009.

E. Garbayo, Effective GDNF brain delivery using microspheres-a promising strategy for Parkinson's disease, J Control Release, vol.135, pp.119-126, 2009.

Y. C. Wang, Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury, Biomaterials, vol.29, pp.4546-4553, 2008.

A. Gutowska, B. Jeong, and M. Jasionowski, Injectable gels for tissue engineering, Anat Rec, vol.263, pp.342-349, 2001.

L. P. Tan, A. Hidayat, L. L. Lao, and L. F. Quah, Release of hydrophilic drug from biodegradable polymer blends, J Biomater Sci Polym Ed, vol.20, pp.1381-1392, 2009.

H. Nomura, C. H. Tator, and M. S. Shoichet, Bioengineered strategies for spinal cord repair, J Neurotrauma, vol.23, pp.496-507, 2006.

K. Sugahara, Structural studies on the chondroitinase ABC-resistant sulfated tetrasaccharides isolated from various chondroitin sulfate isomers, Carbohydr Res, vol.255, pp.145-163, 1994.

Y. Suzuki, Electrophysiological and horseradish peroxidase-tracing studies of nerve regeneration through alginate-filled gap in adult rat spinal cord, Neurosci Lett, vol.318, pp.121-124, 2002.

P. Prang, The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels, Biomaterials, vol.27, pp.3560-3569, 2006.

, Scientific RepoRts |, vol.5, p.13702

D. Cizkova, The influence of sustained dual-factor presentation on the expansion and differentiation of neural progenitors in affinity-binding alginate scaffolds, J Tissue Eng Regen Med, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02940258

K. Lee, E. A. Silva, and D. J. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments, J R Soc Interface, vol.8, pp.153-170, 2011.

G. Perale, Hydrogels in spinal cord injury repair strategies, ACS Chem Neurosci, vol.2, pp.336-345, 2011.

M. S. Shanbhag, Neural progenitor cells grown on hydrogel surfaces respond to the product of the transgene of encapsulated genetically engineered fibroblasts, Biomacromolecules, vol.11, pp.2936-2943, 2010.

H. J. Lam, S. Patel, A. Wang, J. Chu, and S. Li, In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers, Tissue Eng Part A, vol.16, pp.2641-2648, 2010.

D. Cizkova, Alterations of protein composition along the rostro-caudal axis after spinal cord injury: proteomic, in vitro and in vivo analyses, Front Cell Neurosci, vol.8, p.105, 2014.

I. Vanicky, L. Urdzikova, K. Saganova, D. Cizkova, and J. Galik, A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat, J Neurotrauma, vol.18, pp.1399-1407, 2001.

D. Cizkova, Modulation properties of factors released by bone marrow stromal cells on activated microglia: an in vitro study, Sci Rep, vol.4, p.7514, 2014.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, pp.1367-1372, 2008.

J. N. Cox, A. Michalski, R. A. Scheltema, J. V. Olsen, and M. Mann, Andromeda: a peptide search engine integrated into the MaxQuant environment

, J. Proteome Res, vol.10, pp.1794-1805, 2011.

J. Cox, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol Cell Proteomics, vol.13, pp.2513-2526, 2014.

J. A. Vizcaino, ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat Biotechnol, vol.32, pp.223-226, 2014.

J. A. Vizcaino, The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res, vol.41, pp.1063-1069, 2013.

O. Tsur-gang, The effects of peptide-based modification of alginate on left ventricular remodeling and function after myocardial infarction, Biomaterials, vol.30, pp.189-195, 2009.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, A sensitive and reliable locomotor rating scale for open field testing in rats, J Neurotrauma, vol.12, pp.1-21, 1995.

I. Grulova, L. Slovinska, M. Nagyova, M. Cizek, and D. Cizkova, The effect of hypothermia on sensory-motor function and tissue sparing after spinal cord injury, Spine J, vol.13, pp.1881-1891, 2013.

D. Cizkova, Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting, J Neurosci Methods, vol.184, pp.88-94, 2009.

L. L. Jones and M. H. Tuszynski, Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors, J Neurosci, vol.22, pp.4611-4624, 2002.

I. Novotna, IT delivery of ChABC modulates NG2 and promotes GAP-43 axonal regrowth after spinal cord injury, Cell Mol Neurobiol, vol.31, pp.1129-1139, 2011.

I. Nadelhaft and A. M. Booth, The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study, J Comp Neurol, vol.226, pp.238-245, 1984.

D. Cizkova, Functional recovery in rats with ischemic paraplegia after spinal grafting of human spinal stem cells, Neuroscience, vol.147, pp.546-560, 2007.

F. M. Bareyre, Neuronal repair and replacement in spinal cord injury, J Neurol Sci, vol.265, pp.63-72, 2008.

A. Hejcl, Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat, J Neurosurg Spine, vol.8, pp.67-73, 2008.

J. M. Pachence, Collagen-based devices for soft tissue repair, J Biomed Mater Res, vol.33, pp.35-40, 1996.

M. E. Schwab, Repairing the injured spinal cord, Science, vol.295, pp.1029-1031, 2002.

L. M. Urdzikova, Human mesenchymal stem cells modulate inflammatory cytokines after spinal cord injury in rat, Int J Mol Sci, vol.15, pp.11275-11293

R. Jahn, W. Schiebler, C. Ouimet, and P. Greengard, A 38,000-dalton membrane protein (p38) present in synaptic vesicles, Proc Natl Acad Sci, vol.82, pp.4137-4141, 1985.

B. Wiedenmann and W. W. Franke, Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles, Cell, vol.41, pp.1017-1028, 1985.

R. J. Nudo and R. B. Masterton, Descending pathways to the spinal cord: a comparative study of 22 mammals, J Comp Neurol, vol.277, pp.53-79, 1988.

R. J. Nudo and R. B. Masterton, Descending pathways to the spinal cord, IV: Some factors related to the amount of cortex devoted to the corticospinal tract, J Comp Neurol, vol.296, pp.584-597, 1990.

F. M. Bareyre, The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats, Nat Neurosci, vol.7, pp.269-277, 2004.

D. Cizkova, Repetitive intrathecal catheter delivery of bone marrow mesenchymal stromal cells improves functional recovery in a rat model of contusive spinal cord injury, J Neurotrauma, vol.9, pp.1951-1961, 2011.

S. Karimi-abdolrezaee, E. Eftekharpour, J. Wang, D. Schut, and M. G. Fehlings, Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord, J Neurosci, vol.30, pp.1657-1676, 2010.

I. C. Maier, Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury, J Neurosci, vol.28, pp.9386-9403, 2008.

S. Carbonetto, M. M. Gruver, and D. C. Turner, Nerve fiber growth in culture on fibronectin, collagen, and glycosaminoglycan substrates, J Neurosci, vol.3, pp.2324-2335, 1983.

S. T. Carbonetto, M. M. Gruver, and D. C. Turner, Nerve fiber growth on defined hydrogel substrates, Science, vol.216, pp.897-899, 1982.

Y. Zhong, X. Yu, R. Gilbert, and R. V. Bellamkonda, Stabilizing electrode-host interfaces: a tissue engineering approach, J Rehabil Res Dev, vol.38, pp.627-632, 2001.

K. Kataoka, Alginate, a bioresorbable material derived from brown seaweed, enhances elongation of amputated axons of spinal cord in infant rats, J Biomed Mater Res, vol.54, pp.373-384, 2001.

K. Suzuki, Regeneration of transected spinal cord in young adult rats using freeze-dried alginate gel, Neuroreport, vol.10, pp.2891-2894, 1999.

E. A. Joosten, P. R. Bar, and W. H. Gispen, Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat, J Neurosci Res, vol.41, pp.481-490, 1995.

H. E. Olson, Neural stem cell-and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord, Tissue Eng Part A, vol.15, pp.1797-1805, 2009.

K. H. Plate, Mechanisms of angiogenesis in the brain, J Neuropathol Exp Neurol, vol.58, pp.313-320, 1999.

, Scientific RepoRts |, vol.5, p.13702

K. Sobue, Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors, Neurosci Res, vol.35, pp.155-164, 1999.

G. C. Bird, Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP, Mol Pain, vol.2, p.31, 2006.

J. R. Keast and W. C. De-groat, Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats, J Comp Neurol, vol.319, pp.615-623, 1992.

R. R. Ji, T. Kohno, K. A. Moore, and C. J. Woolf, Central sensitization and LTP: do pain and memory share similar mechanisms?, Trends Neurosci, vol.26, pp.696-705, 2003.

T. Minami, Involvement of primary afferent C-fibres in touch-evoked pain (allodynia) induced by prostaglandin E2, Eur J Neurosci, vol.11, pp.1849-1856, 1999.

T. A. Samad, Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity, Nature, vol.410, pp.471-475, 2001.

X. Y. Hua, P. Chen, M. Marsala, and T. L. Yaksh, Intrathecal substance P-induced thermal hyperalgesia and spinal release of prostaglandin E2 and amino acids, Neuroscience, vol.89, pp.525-534, 1999.

D. Ferrari, Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages, J Immunol, vol.159, pp.1451-1458, 1997.

C. I. Svensson, Prostaglandin E2 release evoked by intrathecal dynorphin is dependent on spinal p38 mitogen activated protein kinase, Neuropeptides, vol.39, pp.485-494, 2005.

J. Silver and J. H. Miller, Regeneration beyond the glial scar, Nat Rev Neurosci, vol.5, pp.146-156, 2004.