M. Talagas, N. Lebonvallet, F. Berthod, and L. Misery, Cutaneous nociception: role of keratinocytes, Exp. Dermatol, vol.28, issue.12, pp.1466-1469, 2019.

D. Kempeneers, E. Hauben, and P. De-haes, IgG4-related skin lesions: case report and review of the literature, Clin. Exp. Dermatol, vol.39, pp.479-483, 2014.

F. Rongioletti, V. Caputo, . Pancreatic, and . Panniculitis, G. Ital. Dermatol. Venereol, vol.148, pp.419-425, 2013.

A. Kuwahara, Angiogenin expression in the sera and skin of patients with rheumatic diseases, Biosci. Trends, vol.6, pp.229-233, 2012.

J. Fallon, S. Majeed, H. Adamali, and H. Gunawardena, Lesson of the month 2: dry skin, yellow nails and breathlessness, Clin. Med. (Lond), vol.17, pp.371-372, 2017.

T. T. Htike, S. Mishra, S. Kumar, P. Padmanabhan, and B. Gulyas, Peripheral biomarkers for early detection of Alzheimer's and Parkinson's diseases, Mol. Neurobiol, vol.56, pp.2256-2277, 2019.

D. W. Lam and D. Leroith, The worldwide diabetes epidemic, Curr. Opin. Endocrinol. Diabetes Obes, vol.19, pp.93-96, 2012.

F. Quondamatteo, Skin and diabetes mellitus: what do we know?, Cell Tissue Res, vol.355, pp.1-21, 2014.

M. Aye and E. A. Masson, Dermatological care of the diabetic foot, Am. J. Clin. Dermatol, vol.3, pp.463-474, 2002.

I. Bristow, Non-ulcerative skin pathologies of the diabetic foot, Diabetes Metab. Res. Rev, vol.24, issue.1, pp.84-89, 2008.

X. Ge, Detection of trace glucose on the surface of a semipermeable membrane using a fluorescently labeled glucose-binding protein: a promising approach to noninvasive glucose monitoring, J. Diabetes Sci. Technol, vol.7, pp.4-12, 2013.

S. K. Vashist, Non-invasive glucose monitoring technology in diabetes management: a review, Anal. Chim. Acta, vol.750, pp.16-27, 2012.

S. K. Vashist, Continuous glucose monitoring systems: a review, Diagnostics (Basel), vol.3, pp.385-412, 2013.

D. Bruen, C. Delaney, L. Florea, and D. Diamond, Glucose sensing for diabetes monitoring: recent developments, Sensors, 2017.

J. Choi, R. Ghaffari, L. B. Baker, and J. A. Rogers, Skin-interfaced systems for sweat collection and analytics, Sci. Adv, vol.4, p.3921, 2018.

L. J. Currano, Wearable sensor system for detection of lactate in sweat, Sci. Rep, vol.8, p.15890, 2018.

S. O. Garcia, Wearable sensor system powered by a biofuel cell for detection of lactate levels in sweat, ECS J. Solid State. Sci. Technol, vol.5, pp.3075-3081, 2016.

M. Cuartero, M. Parrilla, and G. A. Crespo, Wearable potentiometric sensors for medical applications, Sensors, 2019.

R. Wong, S. Geyer, W. Weninger, J. C. Guimberteau, and J. K. Wong, The dynamic anatomy and patterning of skin, Exp. Dermatol, vol.25, pp.92-98, 2016.

K. Kabashima, T. Honda, F. Ginhoux, and G. Egawa, The immunological anatomy of the skin, Nat. Rev. Immunol, vol.19, pp.19-30, 2019.

W. Li, Signals that initiate, augment, and provide directionality for human keratinocyte motility, J. Invest. Dermatol, vol.123, pp.622-633, 2004.

V. Falanga, Wound healing and its impairment in the diabetic foot, Lancet, vol.366, pp.1736-1743, 2005.

S. C. Hu and C. E. Lan, High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing, J. Dermatol. Sci, vol.84, pp.121-127, 2016.

N. Spravchikov, Glucose effects on skin keratinocytes: implications for diabetes skin complications, Diabetes, vol.50, pp.1627-1635, 2001.

H. Terashi, K. Izumi, M. Deveci, L. M. Rhodes, and C. L. Marcelo, High glucose inhibits human epidermal keratinocyte proliferation for cellular studies on diabetes mellitus, Int. Wound. J, vol.2, pp.298-304, 2005.

H. H. Jeon, FOXO1 regulates VEGFA expression and promotes angiogenesis in healing wounds, J. Pathol, vol.245, pp.258-264, 2018.

R. Blakytny and E. Jude, The molecular biology of chronic wounds and delayed healing in diabetes, Diabetes Med, vol.23, pp.594-608, 2006.

M. L. Usui, J. N. Mansbridge, W. G. Carter, M. Fujita, and J. E. Olerud, Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds, J. Histochem. Cytochem, vol.56, pp.687-696, 2008.

S. Sakai, Characteristics of the epidermis and stratum corneum of hairless mice with experimentally induced diabetes mellitus, J. Invest. Dermatol, vol.120, pp.79-85, 2003.

J. Okano, Hyperglycemia induces skin barrier dysfunctions with impairment of epidermal integrity in non-wounded skin of type 1 diabetic mice, PLoS ONE, vol.11, p.166215, 2016.

C. C. Lan, C. S. Wu, S. M. Huang, I. H. Wu, and G. S. Chen, High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing, Diabetes, vol.62, pp.2530-2538, 2013.

M. Portugal-cohen and R. Kohen, Exposure of human keratinocytes to ischemia, hyperglycemia and their combination induces oxidative stress via the enzymes inducible nitric oxide synthase and xanthine oxidase, J. Dermatol. Sci, vol.55, pp.82-90, 2009.

C. C. Lan, High-glucose environment inhibits p38MAPK signaling and reduces human beta-defensin-3 expression [corrected] in keratinocytes, Mol. Med, vol.17, pp.771-779, 2011.

A. Abdulrazak, Z. I. Bitar, A. A. Al-shamali, and L. A. Mobasher, Bacteriological study of diabetic foot infections, J. Diabetes Complicat, vol.19, pp.138-141, 2005.

, Scientific RepoRtS |, vol.10, p.12246, 2020.

L. M. Muller, Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus, Clin. Infect. Dis, vol.41, pp.281-288, 2005.

S. Zhu, Wld(S) ameliorates renal injury in a type 1 diabetic mouse model, Am. J. Physiol. Renal Physiol, vol.306, pp.1348-1356, 2014.

W. C. Shih, K. L. Bechtel, and M. V. Rebec, Noninvasive glucose sensing by transcutaneous Raman spectroscopy, J. Biomed. Opt, vol.20, p.51036, 2015.

N. A. Wisniewski, U. Klueh, and J. Stenken, Interstitial fluid physiology as it relates to glucose monitoring technologies: symposium introduction, J. Diabetes Sci. Technol, vol.5, pp.579-582, 2011.

P. P. Samant and M. R. Prausnitz, Mechanisms of sampling interstitial fluid from skin using a microneedle patch, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.4583-4588, 2018.

N. R. Brandt, A. H. Caswell, S. R. Wen, and J. A. Talvenheimo, Molecular interactions of the junctional foot protein and dihydropyridine receptor in skeletal muscle triads, J. Membr. Biol, vol.113, pp.237-251, 1990.

S. Oddoux, Triadin deletion induces impaired skeletal muscle function, J. Biol. Chem, vol.284, pp.34918-34929, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00516073

L. Zhang, J. Kelley, G. Schmeisser, Y. M. Kobayashi, and L. R. Jones, Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane, J. Biol. Chem, vol.272, issue.37, pp.23389-23397, 1997.

K. J. Kamer, MICU1 imparts the mitochondrial uniporter with the ability to discriminate between Ca(2+) and Mn(2+), Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.7960-7969, 2018.

Y. Xing, Dimerization of MICU proteins controls Ca(2+) influx through the mitochondrial Ca(2+) uniporter, Cell. Rep, vol.26, 2019.

S. Marchi, Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death, Cell Calcium, vol.69, pp.62-72, 2018.

J. Rieusset, The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: an update, Cell. Death Dis, vol.9, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01847499

R. Guo, J. Gu, S. Zong, M. Wu, and M. Yang, Structure and mechanism of mitochondrial electron transport chain, Biomed. J, vol.41, pp.9-20, 2018.

L. L. Xie, Mitochondrial network structure homeostasis and cell death, Cancer Sci, vol.109, pp.3686-3694, 2018.

U. Kirchhefer, Transgenic triadin 1 overexpression alters SR Ca2+ handling and leads to a blunted contractile response to beta-adrenergic agonists, Cardiovasc. Res, vol.62, pp.122-134, 2004.

N. Roux-buisson, Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human, Hum. Mol. Genet, vol.21, pp.2759-2767, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00763211

X. Shen, Triadins modulate intracellular Ca(2+) homeostasis but are not essential for excitation-contraction coupling in skeletal muscle, J. Biol. Chem, vol.282, pp.37864-37874, 2007.

S. A. Goonasekera, Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling, J. Gen. Physiol, vol.130, pp.365-378, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00381948

J. M. Lee, Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin, J. Biol. Chem, vol.279, pp.6994-7000, 2004.

D. W. Shin, J. Ma, and D. H. Kim, The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca(2+) and interacts with triadin, FEBS Lett, vol.486, pp.178-182, 2000.

E. Wium, A. F. Dulhunty, and N. A. Beard, A skeletal muscle ryanodine receptor interaction domain in triadin, PLoS ONE, vol.7, p.43817, 2012.

J. Szymanski, Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure, Int. J. Mol. Sci, vol.80715, p.76, 2017.

C. Giorgi, D. De-stefani, A. Bononi, R. Rizzuto, and P. Pinton, Structural and functional link between the mitochondrial network and the endoplasmic reticulum, Int. J. Biochem. Cell Biol, vol.41, pp.1817-1827, 2009.

N. Nemani, S. Shanmughapriya, and M. Madesh, Molecular regulation of MCU: implications in physiology and disease, Cell Calcium, vol.74, pp.86-93, 2018.

F. Fieni, S. B. Lee, Y. N. Jan, and Y. Kirichok, Activity of the mitochondrial calcium uniporter varies greatly between tissues, Nat. Commun, vol.3, p.1317, 2012.

, Scientific RepoRtS |, vol.10, p.12246, 2020.

, /scientificreports/ Reprints and permissions information is available at www.nature.com/reprints