J. X. Chong, K. J. Buckingham, S. N. Jhangiani, C. Boehm, N. Sobreira et al., The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities, Am J Hum Genet, vol.97, pp.199-215, 2015.

H. L. Rehm, Disease-targeted sequencing: a cornerstone in the clinic, Nat Rev Genet, vol.14, pp.295-300, 2013.

H. L. Rehm, Evolving health care through personal genomics, Nature Reviews Genetics, vol.18, pp.259-67, 2017.

Y. Yang, D. M. Muzny, J. G. Reid, M. N. Bainbridge, A. Willis et al., Clinical whole-exome sequencing for the diagnosis of mendelian disorders, N Engl J Med, vol.369, pp.1502-1513, 2013.

W. A. Gahl, T. C. Markello, C. Toro, K. F. Fajardo, M. Sincan et al., The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases, Genet Med, vol.14, pp.51-60, 2012.

C. F. Wright, D. R. Fitzpatrick, and H. V. Firth, Paediatric genomics: diagnosing rare disease in children, Nature Reviews Genetics, vol.19, pp.253-68, 2018.

D. G. Macarthur, T. A. Manolio, D. P. Dimmock, H. L. Rehm, J. Shendure et al., Guidelines for investigating causality of sequence variants in human disease, Nature, vol.508, pp.469-76, 2014.

S. Richards, N. Aziz, S. Bale, D. Bick, S. Das et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology, Genetics in Medicine, vol.17, pp.405-428, 2015.

M. J. Landrum, J. M. Lee, G. R. Riley, W. Jang, W. S. Rubinstein et al., ClinVar: public archive of relationships among sequence variation and human phenotype, Nucleic Acids Res, pp.980-985, 2014.

S. B. Ng, E. H. Turner, P. D. Robertson, S. D. Flygare, A. W. Bigham et al., Targeted capture and massively parallel sequencing of 12 human exomes, Nature, vol.461, pp.272-278, 2009.

S. B. Ng, K. J. Buckingham, C. Lee, A. W. Bigham, H. K. Tabor et al., Exome sequencing identifies the cause of a mendelian disorder, Nature Genetics, vol.42, pp.30-35, 2010.

G. M. Cooper and J. Shendure, Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data, Nature Reviews Genetics, vol.12, pp.628-668, 2011.

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat Protoc, vol.4, pp.1073-81, 2009.

I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova et al., A method and server for predicting damaging missense mutations, Nat Methods, vol.7, pp.248-257, 2010.

H. Carter, C. Douville, P. D. Stenson, D. N. Cooper, and R. Karchin, Identifying Mendelian disease genes with the variant effect scoring tool, BMC Genomics, vol.14, 2013.

J. Thusberg, A. Olatubosun, and M. Vihinen, Performance of mutation pathogenicity prediction methods on missense variants, Hum Mutat, vol.32, pp.358-68, 2011.

D. G. Grimm, C. Azencott, F. Aicheler, U. Gieraths, D. G. Macarthur et al., The Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two Types of Circularity, Human Mutation, vol.36, pp.513-536, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246688

A. Gonzá-lez-pé-rez and N. López-bigas, Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel, Am J Hum Genet, vol.88, pp.440-449, 2011.

M. Kircher, D. M. Witten, P. Jain, B. J. O'roak, G. M. Cooper et al., A general framework for estimating the relative pathogenicity of human genetic variants, Nat Genet, vol.46, pp.310-315, 2014.

C. Dong, P. Wei, X. Jian, R. Gibbs, E. Boerwinkle et al., Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies, Hum Mol Genet, vol.24, pp.2125-2162, 2015.

M. F. Rogers, H. A. Shihab, M. M. Cooper, D. N. Gaunt, T. R. Campbell et al., FATHMM-XF: accurate prediction of pathogenic point mutations via extended features, Bioinformatics, vol.34, pp.511-514, 2018.

I. Ionita-laza, K. Mccallum, B. Xu, and J. D. Buxbaum, A spectral approach integrating functional genomic annotations for coding and noncoding variants, Nature Genetics, vol.48, pp.214-234, 2016.

N. M. Ioannidis, J. H. Rothstein, V. Pejaver, S. Middha, S. K. Mcdonnell et al., REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants, Am J Hum Genet, vol.99, pp.877-85, 2016.

K. A. Jagadeesh, A. M. Wenger, M. J. Berger, H. Guturu, P. D. Stenson et al., M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity, Nature Genetics, vol.48, pp.1581-1587, 2016.

N. Alirezaie, K. D. Kernohan, T. Hartley, J. Majewski, and T. D. Hocking, ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants, The American Journal of Human Genetics, vol.103, pp.474-83, 2018.

L. Sundaram, H. Gao, S. R. Padigepati, J. F. Mcrae, Y. Li et al., Predicting the clinical impact of human mutation with deep neural networks, Nature Genetics, vol.50, p.30038395, 2018.

S. A. Goldman and M. K. Warmuth, Learning binary relations using weighted majority voting, Mach Learn, vol.20, pp.245-71, 1995.

L. Breiman, Random Forests, Machine Learning, vol.45, pp.5-32, 2001.

M. Collins, R. E. Schapire, and Y. Singer, Logistic Regression, AdaBoost and Bregman Distances, Machine Learning, vol.48, pp.253-85, 2002.

M. Lek, K. J. Karczewski, E. V. Minikel, K. E. Samocha, E. Banks et al., Analysis of protein-coding genetic variation in 60,706 humans, Nature, vol.536, pp.285-91, 2016.

A. Siepel, G. Bejerano, J. S. Pedersen, A. S. Hinrichs, M. Hou et al., Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes, Genome Res, vol.15, pp.1034-50, 2005.

K. S. Pollard, M. J. Hubisz, K. R. Rosenbloom, and A. Siepel, Detection of nonneutral substitution rates on mammalian phylogenies, Genome Res, vol.20, pp.110-131, 2010.

M. Garber, M. Guttman, M. Clamp, M. C. Zody, N. Friedman et al., Identifying novel constrained elements by exploiting biased substitution patterns, Bioinformatics, vol.25, pp.54-62, 2009.

J. M. Havrilla, B. S. Pedersen, R. M. Layer, and A. R. Quinlan, A map of constrained coding regions in the human genome, Nature Genetics, vol.51, p.88, 2019.

K. E. Samocha, J. A. Kosmicki, K. J. Karczewski, A. H. O'donnell-luria, E. Pierce-hoffman et al., Regional missense constraint improves variant deleteriousness prediction. preprint. Genomics, 2017.

S. Kawashima and M. Kanehisa, AAindex: amino acid index database, Nucleic Acids Res, vol.28, p.374, 2000.

W. Mclaren, L. Gil, S. E. Hunt, H. S. Riat, G. Ritchie et al., The Ensembl Variant Effect Predictor, Genome Biol, vol.17, p.27268795, 2016.

B. S. Pedersen, R. M. Layer, and A. R. Quinlan, Vcfanno: fast, flexible annotation of genetic variants, Genome Biol, vol.17, p.27250555, 2016.

X. Liu, C. Wu, C. Li, E. Boerwinkle, and . Dbnsfp, 0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs, Hum Mutat, vol.37, pp.235-276, 2016.

P. D. Stenson, M. Mort, E. V. Ball, K. Shaw, A. Phillips et al., The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine, Hum Genet, vol.133, p.24077912, 2014.

B. J. Ainscough, M. Griffith, A. C. Coffman, A. H. Wagner, J. Kunisaki et al., DoCM: a database of curated mutations in cancer, Nat Methods, vol.13, pp.806-813, 2016.

. Uk10k-consortium, K. Walter, J. L. Min, J. Huang, L. Crooks et al., The UK10K project identifies rare variants in health and disease, Nature, vol.526, pp.82-90, 2015.

A. Boyd, J. Golding, J. Macleod, D. A. Lawlor, A. Fraser et al., Cohort Profile: the 'children of the 90s'-the index offspring of the Avon Longitudinal Study of Parents and Children, Int J Epidemiol, vol.42, pp.111-138, 2013.

A. Moayyeri, C. J. Hammond, D. J. Hart, and T. D. Spector, The UK Adult Twin Registry (TwinsUK Resource), Twin Res Hum Genet, vol.16, pp.144-153, 2013.

A. Ameur, J. Dahlberg, P. Olason, F. Vezzi, R. Karlsson et al., SweGen: a whole-genome data resource of genetic variability in a cross-section of the Swedish population, European Journal of Human Genetics, vol.25, pp.1253-60, 2017.

S. E. John, A. D. Eaaswarkhanth, M. Hebbar, P. Channanath, A. M. Thomas et al., Assessment of coding region variants in Kuwaiti population: implications for medical genetics and population genomics, Sci Rep, vol.8, pp.1-30, 2018.

C. Alkan, P. Kavak, M. Somel, O. Gokcumen, S. Ugurlu et al., Whole genome sequencing of Turkish genomes reveals functional private alleles and impact of genetic interactions with Europe, Asia and Africa, BMC Genomics, vol.15, p.963, 2014.

G. R. Abecasis, A. Auton, L. D. Brooks, M. A. Depristo, and R. M. Durbin, An integrated map of genetic variation from 1,092 human genomes, Genomes Project Consortium, vol.491, pp.56-65, 2012.

J. Bö-hm, R. Schneider, E. Malfatti, V. Schartner, X. Lornage et al., Integrated analysis of the large-scale sequencing project "Myocapture" to identify novel genes for myopathies, Neuromuscular Disorders, vol.27, p.195, 2017.

H. Li, Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, 2013.

G. A. Van-der-auwera, M. O. Carneiro, C. Hartl, R. Poplin, D. Angel et al., From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline, Curr Protoc Bioinformatics, vol.43, pp.11-21, 2013.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, 2013.

M. Vihinen, How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis, BMC Genomics, vol.13, 2012.

S. Miyazawa and R. L. Jernigan, A new substitution matrix for protein sequence searches based on contact frequencies in protein structures, Protein Eng, vol.6, pp.267-78, 1993.