U. Dumpis, D. Crook, and J. Oksi, Tick-borne encephalitis, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.28, issue.4, pp.882-90, 1999.

D. R??ek, G. Dobler, and M. O. Donoso, Tick-borne encephalitis: pathogenesis and clinical implications, Travel Med Infect Dis, vol.8, issue.4, pp.223-255, 2010.

I. Caracciolo, M. Bassetti, G. Paladini, R. Luzzati, D. Santon et al., Persistent viremia and urine shedding of tick-borne encephalitis virus in an infected immunosuppressed patient from a new epidemic cluster in North-Eastern Italy, J Clin Virol Off Publ Pan Am Soc Clin Virol, vol.69, pp.48-51, 2015.

F. X. Heinz, H. Holzmann, A. Essl, and M. Kundi, Field effectiveness of vaccination against tick-borne encephalitis, Vaccine, vol.25, issue.43, pp.7559-67, 2007.

O. Donoso-mantke, C. Escadafal, M. Niedrig, and M. Pfeffer, Working Group For Tick-Borne Encephalitis Virus C. Tick-borne encephalitis in Europe, Euro Surveill, vol.16, issue.39, 2007.

D. Ruzek, A. ?upanc, T. Borde, J. Chrdle, A. Eyer et al., Tickborne encephalitis in Europe and Russia: review of pathogenesis, clinical features, therapy, and vaccines, Antiviral Res, vol.164, pp.23-51, 2019.

Z. Balogh, E. Ferenczi, K. Szeles, P. Stefanoff, W. Gut et al., Tickborne encephalitis outbreak in Hungary due to consumption of raw goat milk, J Virol Methods, vol.163, issue.2, pp.481-486, 2010.

S. O. Brockmann, R. Oehme, T. Buckenmaier, M. Beer, A. Jeffery-smith et al., A cluster of two human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and cheese in Germany, Euro Surveill, vol.23, issue.15, pp.17-00336, 2016.

E. Dorko, J. Hockicko, K. Rimárová, A. Bu?ová, P. Popa?ák et al., Milk outbreaks of tick-borne encephalitis in Slovakia, Cent Eur J Public Health, vol.26, pp.47-50, 2018.

D. R??ek, J. Salát, S. K. Singh, and J. Kopecký, Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells, PLoS One, vol.6, issue.5, p.20472, 2011.

E. Gelpi, M. Preusser, U. Laggner, F. Garzuly, H. Holzmann et al., Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue, J Neurooncol, vol.12, issue.4, pp.322-329, 2006.

E. Gelpi, M. Preusser, F. Garzuly, H. Holzmann, F. X. Heinz et al., Visualization of Central European tick-borne encephalitis infection in fatal human cases, J Neuropathol Exp Neurol, vol.64, issue.6, pp.506-518, 2005.

D. Hayasaka, N. Nagata, Y. Fujii, H. Hasegawa, T. Sata et al., Mortality following peripheral infection with tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses, Virology, vol.390, issue.1, pp.139-50, 2009.

D. R?zek, J. Salát, M. Palus, T. S. Gritsun, E. A. Gould et al., CD8+ T-cells mediate immunopathology in tick-borne encephalitis, Virology, vol.384, issue.1, pp.1-6, 2009.

H. M. Lazear, A. K. Pinto, M. R. Vogt, M. Gale, and M. S. Diamond, Beta interferon controls West Nile virus infection and pathogenesis in mice, J Virol, vol.85, issue.14, pp.7186-94, 2011.

D. B. Stetson and R. Medzhitov, Antiviral defense: interferons and beyond, J Exp Med, vol.203, issue.8, pp.1837-1878, 2006.

O. Takeuchi and S. Akira, Innate immunity to virus infection, Immunol Rev, vol.227, issue.1, pp.75-86, 2009.

J. M. González-navajas, J. Lee, M. David, and E. Raz, Immunomodulatory functions of type I interferons, Nat Rev Immunol, vol.12, issue.2, pp.125-160, 2012.

H. Cho, S. C. Proll, K. J. Szretter, M. G. Katze, M. Gale et al., Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses, Nat Med, vol.19, issue.4, pp.458-64, 2013.

S. Delhaye, S. Paul, G. Blakqori, M. Minet, F. Weber et al., Neurons produce type I interferon during viral encephalitis, Proc Natl Acad Sci, vol.103, issue.20, pp.7835-7875, 2006.

C. N. Detje, S. Lienenklaus, C. Chhatbar, J. Spanier, C. K. Prajeeth et al., Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory bulb are important interferon beta producers that protect from lethal encephalitis, J Virol, vol.89, issue.5, pp.2731-2739, 2015.

Y. Hou, R. Banerjee, B. Thomas, C. Nathan, A. García-sastre et al., SARM is required for neuronal injury and cytokine production in response to central nervous system viral infection, J Immunol Baltim Md, vol.191, issue.2, pp.875-83, 1950.

K. Schultz, P. S. Vernon, and D. E. Griffin, Differentiation of neurons restricts arbovirus replication and increases expression of the alpha isoform of IRF-7, J Virol, vol.89, issue.1, pp.48-60, 2015.

E. Weber, K. Finsterbusch, R. Lindquist, S. Nair, S. Lienenklaus et al., Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses, J Virol, vol.88, issue.21, pp.12202-12214, 2014.

J. Mestas and C. Hughes, Of mice and not men: differences between mouse and human immunology, J Immunol Baltim Md, vol.172, issue.5, pp.2731-2739, 1950.

A. E. Shaw, J. Hughes, Q. Gu, A. Behdenna, J. B. Singer et al., Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses, PLoS Biol, vol.15, issue.12, p.2004086, 2017.

F. G. Lafaille, M. J. Ciancanelli, L. Studer, G. Smith, L. Notarangelo et al., Deciphering human cell-autonomous anti-HSV-1 immunity in the central nervous system, Front Immunol, vol.6, p.208, 2015.

D. Brnic, V. Stevanovic, M. Cochet, C. Agier, J. Richardson et al., Borna disease virus infects human neural progenitor cells and impairs neurogenesis, J Virol, vol.86, issue.5, pp.2512-2534, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02651730

C. Scordel, A. Huttin, M. Cochet-bernoin, M. Szelechowski, A. Poulet et al., Borna disease virus phosphoprotein impairs the developmental program controlling neurogenesis and reduces human GABAergic neurogenesis, PLoS Pathog, vol.11, issue.4, p.1004859, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02402647

G. Wallner, C. W. Mandl, M. Ecker, H. Holzmann, K. Stiasny et al., Characterization and complete genome sequences of high-and lowvirulence variants of tick-borne encephalitis virus, J Gen Virol, vol.77, pp.1035-1077, 1996.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2 ???CT method, Methods, vol.25, issue.4, pp.402-410, 2001.

M. Schwaiger and P. Cassinotti, Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA, J Clin Virol, vol.27, issue.02, pp.168-171, 2003.

C. Beck, P. Desprès, S. Paulous, J. Vanhomwegen, S. Lowenski et al., A high-performance multiplex immunoassay for Serodiagnosis of Flavivirus-associated neurological diseases in horses, Biomed Res Int, p.678084, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205127

R. B. Richardson, M. B. Ohlson, J. L. Eitson, A. Kumar, M. B. Mcdougal et al., A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication, Nat Microbiol, vol.3, issue.11, pp.1214-1237, 2018.

C. Farina, F. Aloisi, and E. Meinl, Astrocytes are active players in cerebral innate immunity, Trends Immunol, vol.28, issue.3, pp.138-183, 2007.

M. Bsibsi, R. Ravid, D. Gveric, and J. M. Van-noort, Broad expression of toll-like receptors in the human central nervous system, J Neuropathol Exp Neurol, vol.61, issue.11, pp.1013-1034, 2002.

C. Panayiotou, R. Lindqvist, C. Kurhade, K. Vonderstein, J. Pasto et al., Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation, J Virol, vol.92, issue.7, pp.2054-2071, 2018.

A. S. Upadhyay, K. Vonderstein, A. Pichlmair, O. Stehling, K. L. Bennett et al., Viperin is an iron-sulfur protein that inhibits genome synthesis of tickborne encephalitis virus via radical SAM domain activity, Cell Microbiol, vol.16, issue.6, pp.834-882, 2014.

A. I. Chiramel, N. R. Meyerson, K. L. Mcnally, R. M. Broeckel, V. R. Montoya et al., TRIM5? restricts Flavivirus replication by targeting the viral protease for proteasomal degradation, Cell Rep, vol.27, issue.11, pp.3269-3283, 2019.

C. Lin, Y. Wu, B. Heimrich, and M. Schwemmle, Absence of a robust innate immune response in rat neurons facilitates persistent infection of Borna disease virus in neuronal tissue, Cell Mol Life Sci CMLS, vol.70, issue.22, pp.4399-410, 2013.

P. Ferraris, M. Cochet, R. Hamel, I. Gladwyn-ng, C. Alfano et al., Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway, Emerg Microbes Infect, vol.8, issue.1, pp.1003-1019, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02355950

H. Retallack, D. Lullo, E. Arias, C. Knopp, K. A. Laurie et al., Zika virus cell tropism in the developing human brain and inhibition by azithromycin, Proc Natl Acad Sci, vol.113, issue.50, pp.14408-14421, 2016.

M. A. Cosenza, M. Zhao, S. Q. Lee, and S. C. , Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis, Brain Pathol Zurich Switz, vol.12, issue.4, pp.442-55, 2002.

A. J. Aksamit, J. L. Sever, and E. O. Major, Progressive multifocal leukoencephalopathy: JC virus detection by in situ hybridization compared with immunohistochemistry, Neurology, vol.36, issue.4, pp.499-504, 1986.

P. Kapil, N. B. Butchi, S. A. Stohlman, and C. C. Bergmann, Oligodendroglia are limited in type I interferon induction and responsiveness in vivo, Glia, vol.60, issue.10, pp.1555-66, 2012.

J. Guarner, W. Shieh, S. Hunter, C. D. Paddock, T. Morken et al., Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis, Hum Pathol, vol.35, issue.8, pp.983-90, 2004.

Y. Iwasaki, J. X. Zhao, T. Yamamoto, and H. Konno, Immunohistochemical demonstration of viral antigens in Japanese encephalitis, Acta Neuropathol (Berl), vol.70, issue.1, pp.79-81, 1986.

J. Kimura-kuroda, M. Ichikawa, A. Ogata, K. Nagashima, and K. Yasui, Specific tropism of Japanese encephalitis virus for developing neurons in primary rat brain culture, Arch Virol, vol.130, issue.3-4, pp.477-84, 1993.

C. Kurhade, L. Zegenhagen, E. Weber, S. Nair, K. Michaelsen-preusse et al., Type I interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1, J Neuroinflammation, vol.13, p.22, 2016.

R. Lindqvist, F. Mundt, J. D. Gilthorpe, S. Wölfel, N. O. Gekara et al., Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects, J Neuroinflammation, vol.13, issue.1, p.277, 2016.

M. Palus, T. Bílý, J. Elsterová, H. Langhansová, J. Salát et al., Infection and injury of human astrocytes by tick-borne encephalitis virus, J Gen Virol, vol.95, pp.2411-2437, 2014.

M. Potokar, M. Korva, J. Jorga?evski, T. Av?i?-?upanc, and R. Zorec, Tick-borne encephalitis virus infects rat astrocytes but does not affect their viability, PLoS One, vol.9, issue.1, p.86219, 2014.

A. Desai, S. K. Shankar, V. Ravi, A. Chandramuki, and M. Gourie-devi, Japanese encephalitis virus antigen in the human brain and its topographic distribution, Acta Neuropathol (Berl), vol.89, issue.4, pp.368-73, 1995.

A. C. German, K. Myint, N. Mai, I. Pomeroy, N. H. Phu et al., A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model, Trans R Soc Trop Med Hyg, vol.100, issue.12, pp.1135-1180, 2006.

G. J. Sips, J. Wilschut, and J. M. Smit, Neuroinvasive flavivirus infections, Rev Med Virol, vol.22, issue.2, pp.69-87, 2012.

H. Yokoo, S. Nobusawa, H. Takebayashi, K. Ikenaka, K. Isoda et al., Anti-human Olig2 antibody as a useful immunohistochemical marker of normal oligodendrocytes and gliomas, Am J Pathol, vol.164, issue.5, pp.1717-1742, 2004.

D. M. Durrant, S. Ghosh, and R. S. Klein, The olfactory bulb: an immunosensory effector organ during neurotropic viral infections, ACS Chem Nerosci, vol.7, issue.4, pp.464-473, 2016.

M. Lucas-hourani, H. Munier-lehmann, O. Helynck, A. Komarova, P. Desprès et al., High-throughput screening for broad-spectrum chemical inhibitors of RNA viruses, J Vis Exp JoVE, issue.87, p.51222, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01113538

J. C. Welsch, B. Charvet, S. Dussurgey, O. Allatif, N. Aurine et al., Type I interferon receptor signaling drives selective permissiveness of astrocytes and microglia to measles virus during brain infection, J Virol, vol.93, issue.13, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02474178

R. Lindqvist and A. K. Överby, The role of viperin in antiflavivirus responses, DNA Cell Biol, vol.37, issue.9, pp.725-755, 2018.

Y. Dong and E. N. Benveniste, Immune function of astrocytes, Glia, vol.36, issue.2, pp.180-90, 2001.

U. Hanisch, Microglia as a source and target of cytokines, Glia, vol.40, issue.2, pp.140-55, 2002.

S. Madeddu, T. A. Woods, P. Mukherjee, D. Sturdevant, N. B. Butchi et al., Identification of glial activation markers by comparison of transcriptome changes between astrocytes and microglia following innate immune stimulation, PLoS One, vol.10, issue.7, p.127336, 2015.

S. Chakraborty, A. Nazmi, K. Dutta, and A. Basu, Neurons under viral attack: victims or warriors?, Neurochem Int, vol.56, issue.6-7, pp.727-762, 2010.

M. Selinger, G. S. Wilkie, L. Tong, Q. Gu, E. Schnettler et al., Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection, J Gen Virol, vol.98, issue.8, pp.2043-60, 2017.

S. Grygorczuk, J. Zajkowska, R. Swierzbi?ska, S. Pancewicz, M. Kondrusik et al., Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis, Neurol Neurochir Pol, vol.40, issue.2, pp.106-117, 2006.

S. Z. Lepej, L. Misi?-majerus, T. Jeren, O. D. Rode, A. Remenar et al., Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis, Acta Neurol Scand, vol.115, issue.2, pp.109-123, 2007.

J. Zajkowska, A. Moniuszko-malinowska, S. A. Pancewicz, A. Muszy?ska-mazur, M. Kondrusik et al., Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE), Adv Med Sci, vol.56, issue.2, pp.311-318, 2011.

M. Hirano, K. Yoshii, M. Sakai, R. Hasebe, O. Ichii et al., Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures, J Gen Virol, vol.95, pp.849-61, 2014.

T. Bílý, M. Palus, L. Eyer, J. Elsterová, M. Vancová et al., Electron tomography analysis of tick-borne encephalitis virus infection in human neurons, Sci Rep, vol.5, p.10745, 2015.

B. Shrestha, D. Gottlieb, and M. S. Diamond, Infection and injury of neurons by West Nile encephalitis virus, J Virol, vol.77, issue.24, pp.13203-13216, 2003.

S. A. Liddelow and B. A. Barres, Reactive astrocytes: production, function, and therapeutic potential, Immunity, vol.46, issue.6, pp.957-67, 2017.

A. Soung and R. S. Klein, Viral encephalitis and neurologic diseases: focus on astrocytes, Trends Mol Med, vol.24, issue.11, pp.950-62, 2018.

X. Li, L. Sarmento, and Z. F. Fu, Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses, J Virol, vol.79, issue.15, pp.10063-10071, 2005.

J. Li and L. Conforti, Axonopathy in Huntington's disease, Exp Neurol, vol.246, pp.62-71, 2013.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations