H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore et al., Molecular cell biology, 2000.

E. K. Day, N. G. Sosale, and M. J. Lazzara, Cell signaling regulation by protein phosphorylation: a multivariate, heterogeneous, and context-dependent process, Curr Opin Biotechnol, vol.40, pp.185-192, 2016.

L. N. Johnson, M. E. Noble, and D. J. Owen, Active and inactive protein kinases: structural basis for regulation, Cell, vol.85, pp.149-158, 1996.

H. Cheng, R. Z. Qi, H. Paudel, and H. Zhu, Regulation and function of protein kinases and phosphatases, Enzyme Res, p.794089, 2011.

Z. Wang and P. A. Cole, Catalytic mechanisms and regulation of protein kinases, Methods Enzymol, vol.548, pp.1-21, 2014.

B. Nolen, S. Taylor, and G. Ghosh, Regulation of protein kinases controlling activity through activation segment conformation, Mol Cell, vol.15, pp.661-675, 2004.

D. A. Flockhart and J. D. Corbin, Regulatory mechanisms in the control of protein kinase, Crit Rev Biochem, vol.12, pp.133-186, 1982.

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Res, vol.28, pp.235-242, 2000.

A. P. Kornev, N. M. Haste, and S. S. Taylor, Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism, Proc Natl Acad Sci U S A, vol.103, pp.17783-17788, 2006.

A. P. Kornev and S. S. Taylor, A helix scaffold for the assembly of active protein kinases, Proc Natl Acad Sci U S A, vol.105, pp.14377-14382, 2008.

M. Huse and J. Kuriyan, The conformational plasticity of protein kinases, Cell, vol.109, pp.275-282, 2002.

J. Zheng, E. A. Trafny, D. R. Knighton, N. H. Xuong, S. S. Taylor et al., ) 2.2 a refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor, Acta Crystallogr, vol.49, pp.362-365, 1993.

J. A. Adams, Kinetic and catalytic mechanisms of protein kinases, Chem Rev, vol.101, pp.2271-2290, 2001.

J. A. Endicott, M. Noble, and L. N. Johnson, The structural basis for control of eukaryotic protein kinases, Annu Rev Biochem, vol.81, pp.587-613, 2012.

R. Bayliss, T. Sardon, I. Vernos, and E. Conti, Structural basis of Aurora-a activation by TPX2 at the mitotic spindle, Mol Cell, vol.12, pp.851-862, 2003.

Y. Zhang, J. Wu, and Z. Wang, Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated crosstalk between MAPKs ERK2 and p38alpha, J Biol Chem, vol.286, pp.16150-16162, 2011.

R. Brewer, M. Choi, S. H. Alvarado, D. Moravcevic, K. Pozzi et al., The juxtamembrane region of the EGF receptor functions as an activation domain, Mol Cell, vol.34, pp.641-651, 2009.

R. Kalaivani and N. Srinivasan, Gaussian network model study suggests that structural fluctuations are higher for inactive states than active states of protein kinases, Mol Biosyst, vol.11, pp.1079-1095, 2015.

C. L. Mcclendon, A. P. Kornev, M. K. Gilson, and S. S. Taylor, Dynamic architecture of a protein kinase, Proc Natl Acad Sci U S A, vol.111, pp.4623-4631, 2014.

J. Wu, J. Yang, N. Kannan, . Madhusudan, N. H. Xuong et al., Crystal structure of the E230Q mutant of cAMP-dependent protein kinase reveals an unexpected apoenzyme conformation and an extended N-terminal a helix, Protein Sci, vol.14, pp.2871-2879, 2005.

E. E. Thompson, A. P. Kornev, N. Kannan, C. Kim, T. Eyck et al., Comparative surface geometry of the protein kinase family, Protein Sci, vol.18, pp.2016-2026, 2009.

M. J. Moore, J. R. Kanter, K. C. Jones, and S. S. Taylor, Phosphorylation of the catalytic subunit of protein kinase a. autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1, J Biol Chem, vol.277, pp.47878-47884, 2002.

S. S. Taylor and E. Radzio-andzelm, Three protein kinase structures define a common motif, Structure, vol.2, pp.345-355, 1994.

D. A. Case, R. M. Betz, W. Botello-smith, D. S. Cerutti, T. Cheatham et al., , 2016.

J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, and K. E. Hauser, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J Chem Theory Comput, vol.11, pp.3696-3713

T. K. Kim, T test as a parametric statistic, Korean J Anesthesiol, vol.68, pp.540-546, 2015.

T. M. Allison, E. Reading, I. Liko, A. J. Baldwin, A. Laganowsky et al., Quantifying the stabilizing effects of protein-ligand interactions in the gas phase, Nat Commun, vol.6, p.8551, 2015.

R. Kalaivani, A. G. De-brevern, and N. Srinivasan, Conservation of structural fluctuations in homologous protein kinases and its implications on functional sites, Proteins Struct Funct Bioinform, vol.84, pp.957-978, 2016.

M. L. Mchugh, The chi-square test of independence, Biochem Med, vol.23, pp.143-149, 2013.

R. Scholz, M. Suter, T. Weimann, C. Polge, P. V. Konarev et al., Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain alphaG-helix, J Biol Chem, vol.284, pp.27425-27437, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00422467

A. C. Dar, T. E. Dever, and F. Sicheri, Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR, Cell, vol.122, pp.887-900, 2005.

S. S. Taylor, N. M. Haste, and G. Ghosh, PKR and eIF2al-pha: integration of kinase dimerization, activation, and substrate docking, Cell, vol.122, pp.823-825, 2005.

S. J. Deminoff, V. Ramachandran, and P. K. Herman, Distal recognition sites in substrates are required for efficient phosphorylation by the cAMP-dependent protein kinase, Genetics, vol.182, pp.529-539, 2009.

J. S. Jimenez, A. Kupfer, V. Gani, and S. Shaltiel, Saltinduced conformational changes in the catalytic subunit of adenosine 3 0 ,5 0 -phosphate dependent protein kinase. Use for establishing a connection between one sulfhydryl group and the .gamma.-P subsite in the ATP site of this subunit, Biochemistry, vol.21, pp.1623-1630, 1982.

N. C. Nelson and S. S. Taylor, Differential labeling and identification of the cysteine-containing tryptic peptides of catalytic subunit from porcine heart cAMP-dependent protein kinase, J Biol Chem, vol.256, pp.3743-3750, 1981.

A. Fiser and A. Sali, Modeller: generation and refinement of homology-based protein structure models, Methods Enzymol, vol.374, pp.461-491, 2003.

D. A. Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai et al., , vol.14, 2014.

N. Homeyer, A. Horn, H. Lanig, and H. Sticht, AMBER force-field parameters for phosphorylated amino acids in different protonation states: phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine, J Mol Model, vol.12, pp.281-289, 2006.

K. L. Meagher, L. T. Redman, and H. A. Carlson, Development of polyphosphate parameters for use with the AMBER force field, J Comput Chem, vol.24, pp.1016-1025, 2003.

R. A. Bryce, AMBER parameter database (Bryce Group: Computational Biophysics and Drug Design)

U. K. Manchester, , 2016.

I. S. Joung and T. E. Cheatham, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J Phys Chem B, vol.112, pp.9020-9041, 2008.

P. Li, B. P. Roberts, D. K. Chakravorty, and K. M. Merz, , 2013.

, Lennard-Jones parameters for +2 metal cations in explicit solvent, J Chem Theory Comput, vol.9, pp.2733-2748

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J Comput Phys, vol.23, pp.327-341, 1977.

S. Miyamoto and P. A. Kollman, Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J Comput Chem, vol.13, pp.952-962, 1992.

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, Comput. Sci. Eng, vol.9, pp.10-20, 2007.