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Abstract:

Understanding the structural plasticity of proteins is key to understanding the intricacies of their functions and mechanisti
basis. In the currerstudy, we analyzed the available multiple crystal structures of the same protein for the structural
differences. For this purpose we used an abstraction of protein structures referred as Protein Blocks (PBs) that was
previously established. We also chaesized the nature of the structural variations for a few proteins using molecular
dynamics simulations. In both the cases, the structural variations were summarized in the form of substitution matrices of
PBs. We show that certain conformational states preferably replaced by other specific conformational states.
Interestingly, these structural variations are highly similar to those previously observed across structures of homologous
proteins (>=0.923) or across the ensemble of conformations from NMf ¢°=0.919). Thus our study quantitatively

shows that overall trends of structural changes in a given protein are nearly identical to the trends of structuratglifferenc
that occur in the topologically equivalent positions in homologous proteins.fispese studies are used to illustrate the

nature of these structural variations.

Keywords:

Protein conformation, Protein structural variation, Structural alphabet, Molecular dynamics.

1. Introduction

Proteins exhibit a higher degree of structural sEmation compared to sequence conservatibnas they require
maintaining certain key residues in a specific orientation to fulfill their functional constraintBroteins are also known
to be dynamic entities. Their intrinsic dynamic nature is encoded in the amino acid sequence itsedsaisdsbggdhe high
dynamics associated with certdintrinsically disordered proteinsglisplayingcompositional bidS. These conformational

changes occur also due to natural events such as binding of a ligand and association with other proteins oids@ifglc a

also due to thermodynamic fluctuations in proteins. Extrinsic factors like molecular packing in the crystal lattice, pH,
temperature, pressure and crystallization conditions are also known to affect the protein conformation. There are several
studes that document the dynamic nature of protéifis FRQWULEXWHG E\ RQH RU PRUH RI WKHVH
ConTemplat¥ webserver takes as input a protein structure (or model) and proposes possible alternative conformations for
the protein. Tk Protein Data BarlkFlexibility (PDBFlex)"*, Conformational Diversity of the Native State (CoDN4&nhd

Conformational Change Profile (CCPrbfland studies document the structural variations in proteins sharing >=95%



sequence similarityFor the currenstudy we focus only on proteins sharing exact (100%) sequence idéhttybserved
structural changes in thisthsetmay be caused by diverse factors. Considered collectively, multiple structural entries for a
given protein represent stable (crystallile) conformers and they represent the extent of structural diversity possible in a

protein irrespective of the factor causing the structural change.

In this work, inspired by the availability of CoDNaS resoume,studied the local structural changdserved over a large
collection of alternate crystal structures of the same protein using Protein Blocks (PBs), a structural alphabet. Rkstein Blo
are a 16 state classification of pentapeptide fragments that can abstract any part of a protein baukhodé® 7 KH
versatility of PBs to abstract protein structures have been exploited for diverse applications: to predict proteirt®$tructure

in fold recognitio’®* for structural motif identificatiof?, molecular dynamics trajectory anal/8 *®etc® Furthermore,

PBs have been shown to be convenient in identifying local structural variations in profeitisis also effective in
differentiating between structurally variable and conserved regiomstein structurés®?  The reldionship between this

PB based metric and the conventionally used root mean squared deviation (RMSD) have been extensively presented and
discussed in other studf@$’ Previously, non PB based studies have been undertaken to analyze structural variations
homologous proteins using normal mode anafysimnd Gaussian network approdth and also structural variations
inherent to proteirfd. The novelty of our current work lies in analyzing the structural variations occurring within a set
proteins and ¢ compare them with those occurring between their respective homoldgBeshave been used to
characterize the nature of the structural variations observed across structures of homologou¥ frateinsonformers

from NMR ensemblé& From these anabgs, two PB substitution matrices were derived. One PB substitution matrix
summarizes the local structure variations occurring between structurally equivalent regions across homologous structures
and another between alternate NMR models. The comparigbe oo matrices showed a high degree of similarity in the

nature of structural variations at play in these two contexts.

In this work, we extended this analysis by investigating the nature of the structural variations observed between conformers
of the same protein derived from multiple crystallographic instances and from conformations explored during molecular
dynamics simulations. Inherent to the nature of these datasets, these structural variations are not drastic but the structura
variations that dooccur in the protein backbone, are statistically very similar to those observed across homologous
structures or across models from NMR experiments.We summarized these structural variations in the form of two additional

substitution matrices and investigdthow they relate to the matrices established previoisly



2. Materials and Methods
2.1 Datasets

To analyze the structural variations across multiple entries of the same protein in ti& &DBrotein chains were
considered independently. If a P[2Rtry has 2 identical protein chains (e.g a homodimer), some structural variations could

be observed between them, hence justifying they are considered separately. All the 250,000 protein chains available in the
PDB at the time of the study were clustesed.00% sequence identitising the BLASTClust algorithtfi = 7KLV UHVXOW F
in 56,829 clusters of identical protein chains with the largest cluster being the one with the capsid proteil ofitdlV

2,580 chains. These are viral capsid proteins in multimeric forms that were solved by different research grofifse<au

56,829 clusters, singletongere not kept sinca minimum of two structures in a cluster is needed in order to study their
structural variability. Further our study focuses only on structures solvedrhy Brystallography with a resolution 2f5

A or better.Protein chains with chain breaks were also remowder this filtering process we were left with a total of
254,979 protein chains distributed 23,631 clusters. From this dataset, a total of 7.8 million pairwise comparisons were
perfamed For example, in a cluster with n=30 protein chains, ma&de a total of435 (i.e. (n*(n-1))/2) pairwise

comparisons .

2.2 Protein Blocks

Protein Blocks are dbrary of 16 backbone conformational states (structural alphabet) denoted by theddtigrsThe

orientation of the backbone atoms in diwe consecutive residues in a protein structure can be defined by a series of 8
torsion angles 8 Y6PBs are defined by 16 sets of these 8 torsion angles. This standard library of torsion angles were
determined by unsupervised clustering of the torsion angles from-sedandant set of proteils 3DUVLQJ D SURW
structure through a sliding winev of 5 residues enables abstraction of the backbone 3D structure into 1D string of PBs.
The PBET (Protein Block Transform) tool available on the PBE (Protein Blocks Expert}seseter fttp://www.bo-
protscience.fr/pbe/?page_id916an be used to encode protein structures into PB seqdierideare are many advantages

to approximating protein backbone conformation using PBs and a number of applications have been developed based on

PBsS®.

2.3 Molecular dynamics

A collection of 130 structures of unrelated proteins were subjected to molecular dynamics simulation using the
GROMACS" program for a duration of 10 ns each. These proteins shared less than 30% sequence identity with one

anotherweresinge chain proteins with no chain breaks and no ligands bound. Further structural criteria imposed were a X


http://www.bo-protscience.fr/pbe/?page_id=10
http://www.bo-protscience.fr/pbe/?page_id=10

ray crystallographic resolution better than 1.75 AaBtor <0.18 and free Rctor <0.24. The simulations were carried out
in NPT conditions usinghe Amber99SHLDN force field with TIP3P water model at 300K temperature and 1 atm
pressure. The leapfrog integrator was used with the timestep set as 2 fs. Periodic conditions were applied. Global charge

was neutralized to 0.15 mol/L with Nand Clions

2.4 Generating the matrices

Structures of 254,979 protein chains in our data set were represented as sequencassiigPBsirhouse Perl script.

Multiple structural entries of the same protein represented as PB sequences were comparedvsiatirfashion. PB
sequences that constituted our dataset are provided in supplementary material S4. To ensure only structurally equivalent
regions of both the proteins were being compared, the missing residues atetineinél and @erminal were adjusted by
introducing appropriate number of gaps to the shorter sequence. The PB variations from these 7.8 million pairwise
comparisons were cumulated and used to populate a 16 X 16 variation matrix. Henceforth this matrix is referred to as the

altconfMATbecausetisummarizes the alternate conformations of crystallographic structures.

An equivalent16 x 16 matrix was constructed that summaries the PB change between snapshots during the MD simulation.
Out of the 10 ns simulation, the first 5 ns were not taken iatsideration for the analysis to allow for the system to
stabilize. Coordinates of the protein structure were written out after every 250 ps. Hence we get 19 sets of coordinates for
each of the 130 simulations. These coordinates were converted into RBiGeExjexactly in the same manner as described
before. Similarly, the corresponding PB sequences that constituted this dataset are provided in supplementary material S4.
The PB variations among these PB sequences were used to populate the second ABmatiatichenceforth called the

dynamicsMAT

Since all the 16 PBs do not occur in the same frequency in protein structures, the matrices so obtained needs to be
normalized. As described previouSi° the normalization was carried out as per the prosedascribed by Johnson and
Overingtort* (Eqn. 1).Syis the normalized score for variation of RBo y, N, ,is the raw count of PR varying to PBy

andM is the total number of PBs. 16.

IS . ng Nx,y X Ef:lgiff:l Nny
X,V e M Nny % Z;f:leJy

x=1

Egn. 1



In thedynamicsMATataset there were no PB< 3 % changes observed, hence in order to avoid undefined values during
the normalization process, the value was changed from 0 to a nominal value of 0.0001. This value was chosen to be lower

than the lowest observed value in the matrix.

3. Results and Bcussion
3.1 Inferences from qualitative analysis of structural plasticity

Previously, backbone structural differences, as inferred from Protein Block (PB) variations observed among models in
NMR ensembles of large number of NMR structures of proteing wempared to the structural differences observed in
topologically equivalent regions of homologous protein structirése cumulated normalized frequencies of PB variations

in NMR ensenbles and homologous protein structures were represented as magfieesd to asNMRMAT and
homologueMATrespectively. The Pearson correlation coefficient between the two matrices (0.92) suggested an excellent
correlatiori. We were interested to see how the newly established PB variation matticesfMATand dynamisMAT

(see section 2.4), related to the previously establisldBMATand thehomologueMAatrices.

The correlations between each of these matrices are summarized in Table 1. All the correlation coefficient values are quite
high with lowest value of abo.87. This means backbone conformational variations observed in the same proteins in
different crystal structures, variations observed during molecular dynamics simulations, variations among the models in
NMR ensembles and differences observed in topo#dlyi equivalent positions in homologous protein structures are all

well correlated with one another. The best correlation is bethd@RMAT and homologueMATmatrices. All the other

matrices show similar correlation values with the lowest correlation icieeff betweenNMRMAT and dynamicsMAT

matrices (*=0.87). A finding from our work is that, overall, the backbone structmaiationsdue to dynamics and
structural differencebetween homologues are highly similar. Furthermore, to ascertain that treslatons are not an

artifact of the nofvariant PBs occuring in the diagonals of these matrices, we recalculated the correlations excluding the
diagonals. These results show a slight reduction in the correlation but very similar trends hence intHatatheg bias

brought about by the newvariant PBs is minimal.

Table 1: Correlation among the three PB variation matrices (NMRMAT®, altconfMAT, dynamicsMAT) and the PB
transition matrix (homologueMAT %). The values in the brackets are the correlationsalculated by excluding the
non-variant (diagonal) PBs.

homologueMAT NMRMAT altconfMAT dynamicsMAT
homologueMAT 1
0.945
NMRMAT (0.921) 1
altconfMAT 0.923 0.919 1

(0.908) (0.850)



0.910 0.872 0.922

dynamicsMAT (0.864) (0.787) (0.885)

Torsion agles of the PBs are organized in such a way that specific PBs have a higher predisposition to be present in certain
secondary structure elements (SSE). RBb and c correspond to the W HUPLQDO FDSStsQahds/ PBAARQV RI
corresponds to the georé U \ -&rand central regions, PBsandf to G W H U P L Q D Gstramis. \rh& dounterparts for

the helices are PHsand| for the Nterminal caps, PBn for the central region and PBso andp for the Gterminal caps.

PBsg, h, i andj represent théoop regions. Therefore, as expected, PBs representing the ends of the spectrum namely PBs
mandd VKRZ WKH OHDVW VWUXFWXUDO YDULDWLRQ 7KLV LMakdHP8dhdwhg QWHG E
the highest shades of red in the heat mdyis pattern is consistent across all the four matrices. Apart from thm@Bdd,

the PBf and PBk are highly represented in the top five invariant PBs. They represent iveH3U P L @Dabd<Rand N

terminal of helices respectively. The Pg&sj, b, handi are highly represented in the top 5 varying PBs across all the four
matrices. PBb is the excption in this list as it typically corresponds to theW H U P L Q D GtranhbsSvHereas the other

PBs correspond to the loop regions.
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Figure 1. Tri colored heat maps of the four substitution matrices.
(a) altconfMAT. (b) dynamicsMAT. (c) homologueMATd) NMRMAT.

3.2 Inferences from quantitative analysis of structural plasticity

All the 4 matricesare symmetric across the diagonal. Diagonal elements represent extent of retention of PBs and the off
diagonal values correspond to PB substitutions. Thpgstion of the sum of the raw counts of-dfiigonal elements to the
sum of all the raw counts of the matrix reflects the amount of structural variability captured by that particular matrix. For
the altconfMAT this value is 4.88% and it is 7.04% for thgnamicsMATmatrix. The sum of the values of a row in the
normalized matrix is a measure of how favorable or unfavorable the particular PB is to structural variations. The more

negative this value is, the more resistant that particular PB is to structtiegloves (see supplementary material S1 for



individual PB values for all the four matrices). PBandd RIWHQ FRUUHVSRQG WRh&MRHVBsQe@té) DO UH.
respectively (92% and 75% obhelix and Esheet respectivel). The extent to which PBm andd are refractory to

structural variation are very comparable in @leconfMAT and dynamicsMA. However, this is not the case for the
previously established matricethe NMRMAT and thehomologueMATIn both these cases, RBis significantly better

retained than PH.

Once it is established that the central regions of the regular Secondary3thir© (O H P H QKAMAVO L] 6dheEG are

mainly structurally invariant, we now focus on the loop regions and the interface of loop and SSEaltnoidAT

matrix, this amounts to 78.2% of the structural variations out of which 64.3% are fronptiiegceegions of the SSEs. In

the case oflynamicsMAT65.9%o0f the variations are from the capping regions and this value increases to 79.4% if the loop
regions are included (see Supplementary materials S2 for a more detaileduorefakvhich regions cdribute to the
variations). It must be noticed that the distribution of PBs in the central regions of SSEs, capping regions of SSEs and the
loop regions are not absolute. For example, although thegPiBs andj represent the loop regions we can ocazaly

find other PBs in the loop regions as well.

The correlation coefficients listed in Table 1 are overall values for all the 16 PBs. They can hide differences incatrelatio
the individual PB level. Hence we decided to calculate the individual RB worrelation between these four matrices.
Figure 2 is a plot of these PRBise correlations. In each case the red line corresponds to the overall correlation, the points
above contribute positively to the correlation and the ones below negative \NNIRMAT vs dynamicsMATPB wise

correlation shows the maximum dispersion.
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Figure 2. Individual PB wise correlation between the four matrices.

(a) homologueMAT~s NMRMAT (b) homologueMATs altconfMAT, (¢) NMRMATVvs altconfMAT, (d) homologueMATs
dynamicsMA, (e) NMRMATvs dynamicsMAT (f) altconfMATvs dynamicsMAT The global correlation values in Table 1

are represented by the horizontal red lines. Points above this line contribute positively to the correlation and th@wones bel
negatively.

3.3 Case studygf structural variations in alternate conformations of the same protein

Implications of different functional states or conformational changes potentially induced by ligand binding on the backbone
conformational variations in a given protein were analyzdte cluster we get from BLASTClust filtered at 100%
sequence identity for human tyrosine kinase consists of three structures (PDBID*2$RE7* 1FMK*). Their

superimposition featured in Figure 3 clearly shows that there are large structurabnautiasit are induced upon binding to

MPZ ligand.



Figure 3. Comparison between 3 structures of human tyrosine kinase -8RC by rigid body & flexible
superimposition.

Shown in blue is the unbound form (PDBID 1FMK)in red is the conformation (PDBID 2SR@hen it binds to
phosphoaminophosphonic acid adenylate ester (AN&)d in green is bound form to MPZ ligand (PDBID 1Y87)
Ligands are not shown for clarity. (a) Shown is the rigid body superimposition of the 3 structures. (b) Shown is the rigid
body mirwise superimposition between 2SRC and 1FMK with a calculated RMSD of 0.8 A. (c) Shown is the rigid body
pairwise superimposition between 2SRC and 1Y57 with a calculated RMSD of 21.0 A. (d) Shown is the pairwise flexible
superimposition between 2SRC ah¥{57 after introducing a twist at position 259 using FATCAT that resulted into a
calculated RMSD of 2.7 A.

These are further compared using protein blocks below. Figure 4 shows the PB alignment between the structures of human
tyrosine kinase €SRC boundd ANP ligand (PDBID 2SRC) and to MPZ ligand (PDBID 1Y57). The regions marked in red

are the regions that show structural changes based on PBs. A total of 75 out of the 452 PBs variations are observed. Rigid
body superposition of the two structures using BioFit> software http://www.bioinf.org.uk/software/profit/results in a

high RMSD of 21.3 A (Figure 3c). When the same two structures are aligned flexibly using the FATCAT ptogeam

RMSD raluces to 2.7 A (Figure 3d). This was achieved by the FATCAT algd¥itbsnintroducing a twist located at

residue 259. Indeed, in this region PB sequence between the two structures showed a major difference with a twist at
residue Leucine 25%ere PBdeha arealigned with PBsaaddfk (Figure 4). When the same structure is compared with the
ligand unbound form (PDBID 1FMK) 68 PBs show variation and most importantly the region of the twist shows only one

PB change as opposed to 5 PB changes in the prexdsaq[Eigure 5).


http://www.bioinf.org.uk/software/profit/

Leu 255

Figure 4. PB alignment between two structures of human tyrosine kinase-SRC bound to ANP ligand DB ID

2SRC) and MPZ ligand PDB ID 1Y57) captured byaltconfMAT matrix.

Shown is alignment of chain A for both structures. The regiororesple for the high RMSD value calculated after rigid
superimposition is circled in red. This region displays drastic PB variations that reflect a major twist in the backimone at t
level of leucine 255.

o1 101 111 121 131 141 151 161 171 181

191 201 211 221 231 281

201 301 311 321 331 381

391 401 an 421 431 441 451 461 a7t 481

491 501 511 521 531

Figure 5. PB alignment between two structures ohuman tyrosine kinase CSRC in the unbound form DB ID
1FMK) and bound with ANP ligand (PDB ID 2SRC).

This is an example of structural variation capturedatigontMAT matrix. Shown is alignment of chain A for both
structures. The region featured in FigdO is again circled here. This region displays minor PB variations that reflect very
little change in the backbone conformation in this region.

Figure 6 shows the structure of a mutant amidase fe@obacillus pallids (PDBID 4LF0}’ at the end of 5 an#i0 ns of a

molecular dynamics simulation. The regions marked in red are the regions that show structural changes between these two
states. In this case 25 out of 340 PBs showed variations. In both the cases, the PBs corresponding to the capping regions of
secondary structural elements and loop regions are highly represented. The logical succession to this work would be to

characterize the structural changes during a molecular dynamics simulation at different time steps

Furthermore, when we consider theab examples of tyrosine kinase and amidase and compare them

to their respective 95% sequence homologues, we see similar PB substitutions between them. The
frequently occurring PB < b variation in alternate structures of tyrosine kinase (8 instances)|lso

seen between their homologues (5 instances). There are also three instanckesab P&iation each

for alternate structures vs. homologues of amidase, hence indicating a correlation in structural

variations. Detailed representation of thesemalignts are included in supplementary material S3.



Figure 6. Example of the structural variation captured bydynamicsMATmatrix after 5 and 10 ns MD simulations.

Shown is the PB variations observed in an amidB&B(ID 4LF0) after 5 and 10 ns MD simulatis. On the left is the
cartoon representation of theray structure and on the right are its corresponding PB sequences after 5 and 10 ns MD
simulation. The regions marked in red represent structurally varying regions between the two structured axktitaese
simulation times.

3.4 Case study of structural variations between two homologous proteins having alternate conformations

Implications of backbone conformational variations in a given protein on the perceived structural differences between
homobgous proteins areanalyzedin this case stug. In this analysis we used PBLIGN>! to compare two homologous

proteins each having multiple alternate conformations. The main results are featured in the form of network (Figure 7). The
cluster in red corrgmnds to alternate structures of human sulfotransferase and the ones in green are various conformational
states of the homologue from mouse. All the members of a single group share 100% sequence identity but inter group
members share 59% sequence idenlitye edges in red and green represent-mtoaip alignments and the blue edges are
inter-group alignments. The alignment scores were normalized by length. In all cases the edge length corresponds to the
normalized alignment scores, higher alignment scooesespond to shorter edges. Global distribution of the normalized

alignment scores are featured in (Figure 8).



Figure 7. Network showing structural (dis)similarity between mouse and human sulfotransferases each having

multiple alternate conformations.

The red nodes are the group of human sulfotransferase structures while the green nodes represent the group of mouse
structures. Intragroup alignments are colored in red and green respectively. Intergroup alignments are colored in blue.
Distance between wdes are inversely proportional to the normalized alignment scores. Intragroup distances for the mouse
sulfotransferases are lower than any intergroup distance. Some of the intragroup distances for the human sulfotransferases
are greater than some its irgesup distances.

Figure 8. Distribution of PB-ALIGN normalized alignment scores.

On the left is the distribution of the normalized alignment scores for the mouse sulfotransferase structures group. On the
right is the distribution of the normalized aligant scores for the human sulfotransferase structures group. In red are the
inter group normalized alignment scores. In green are intra group alignment scores. Intragroup scores for the mouse
sulfotransferases are higher than any of its intergroup sdatesgroup scores for the human sulfotransferases show some
overlap with some of its intergroup scores. This overlap is indicated in blue in the histogram on the left.



The closest inter group structures (PDB ID 1LS6 chain A and PDBID 2ZYV chain X) havenalized alignment score of

1.83 and the farthest pair (PDB ID 2D06 chain A and PDB ID 2ZVP chain X) have 1.65. Their corresponding all atom
superposition RMSDs are 0.40 A and 0.46 A, respectively. The difference in normalized alignment score (0.177) and
RMSD (0.06 A) seem to be minor but it is noteworthy that this variability is seen in homologues sharing a high sequence
identity of almost 60%. We can expect this variability effect to be more pronounced in homologues sharing much lower
sequence identityra also when the sizes of the groups are larger. More importantly, as shown in Figure 7, taking one
conformation of the human sulfotransferase as a reference (PDB ID 1LS6 chain A), it can be seen that a mouse
sulfotransferase (PDB ID 2ZYV chain X) confortimm is strikingly more structurally similar to it than another

conformation of the same human sulfotransferase (PDB ID 2D06 chain A).

4. Conclusions

We showed that the backbone structural differences, represented as Protein Blocks (PBs) observeatanséieotl

multiple crystal structures of a given protein are remarkably similar to the structural differences between the homologous
protein structures. In other words, overall trends observed in structural changes in a given protein are nearljoideatical

trends of structural differences that occur in the topologically equivalent positions in homologous proteins. Diffenent PBs i
topologically equivalent positions in two homologous proteins can be characterized by high exchange frequency. Therefore,
if one considers the fact that the easily exchangeable PBs within a protein and between the homologous proteins are nearly
the same, it could be inferred that backbone structures of homologous proteins are more similar than previously thought.
This also mans that upon superposition of two homologous proteins, two residues which are not found to be topologically

equivalent, maybe topologically equivalent if different crystal structures of the homologues are superimposed.

Our analysis of comparison two horagbus protein structures by considering all multiple crystal structures available for

the two homologues shows that the extent of structural variability within a protein can be similar to the extent ofl structura
differences between the homologues. Indeechave shown that structural similarity measure among multiple crystal forms

of a given protein can be less than the structural similarity measure between the protein under study and its homologue.
Therefore if one considers conformational changes itrinad extrinsic in two homologous proteins, it appears that

homologous protein structures more closely resemble each other than what one might infer based only on comparing one of



the conformers of each of the two homologues. Therefore, a more completstanding of how similar the structures of

two homologues is arrived at by considering multiple crystal structures of same two proteins.

Molecular dynamics simulation and models from NMR ensembles seem to capture different aspects of protein structural

dynamics, as indicated by the lowest correlation between the dynamicsMAT and NMRMAT, see Table 1.
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