S. Besteiro, J. F. Dubremetz, and M. Lebrun, The moving junction of apicomplexan parasites: a key structure for invasion, Cell. Microbiol, vol.13, p.21535344, 2011.

D. J. Dubois and D. Soldati-favre, Biogenesis and secretion of micronemes in Toxoplasma gondii, Cell Microbiol, vol.21, 2019.

H. E. Bullen, H. Bisio, and D. Soldati-favre, The triumvirate of signaling molecules controlling Toxoplasma microneme exocytosis: Cyclic GMP, calcium, and phosphatidic acid, PLoS Pathog, vol.15, p.1007670, 2019.

M. A. Hakimi, P. Olias, and L. D. Sibley, Toxoplasma Effectors Targeting Host Signaling and Transcription, Clin Microbiol Rev, vol.30, pp.615-645, 2017.

S. Muñiz-herná-ndez, M. G. Carmen, M. Mondragón, C. Mercier, and M. F. Cesbron, Mondragó n-Gonzá lez SL, Gonzá lez S, Mondragó n R. Contribution of the residual body in the spatial organization of Toxoplasma gondii tachyzoites within the parasitophorous vacuole, J Biomed Biotechnol, 2011.

K. Fré-nal, D. Jacot, P. M. Hammoudi, A. Graindorge, B. Maco et al., Myosin-dependent cell-cell communication controls synchronicity of division in acute and chronic stages of Toxoplasma gondii, Nat Commun, vol.8, p.15710, 2017.

J. Periz, J. Whitelaw, C. Harding, S. Gras, D. R. Minina et al., Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation, Elife, vol.6, issue.24119, 2017.

C. Mercier and M. F. Cesbron-delauw, Toxoplasma secretory granules: one population or more?, Trends Parasitol, vol.31, p.604, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01110876

N. J. Katris, H. Ke, G. I. Mcfadden, G. G. Van-dooren, and R. F. Waller, Calcium negatively regulates secretion from dense granules in Toxoplasma gondii, Cell Microbiol, vol.21, p.13011, 2019.

G. Bd and J. G. Donaldson, Pathways and mechanisms of endocytic recycling, Nat Rev Mol Cell Biol, vol.10, pp.597-608, 2009.

B. Striepen, C. Y. He, M. Matrajt, D. Soldati, and D. S. Roos, Expression, selection, and organellar targeting of the green fluorescent protein in Toxoplasma gondii, Mol Biochem Parasitol, vol.92, pp.325-363, 1998.

B. Striepen, D. Soldati, N. Garcia-reguet, J. F. Dubremetz, and D. S. Roos, Targeting of soluble proteins to the rhoptries and micronemes in Toxoplasma gondii, Mol Biochem Parasitol, vol.92, pp.325-338, 2001.

M. Reiss, N. Viebig, S. Brecht, M. N. Fourmaux, M. Soete et al., Identification and characterization of an escorter for two secretory adhesins in Toxoplasma gondii, J Cell Biol, vol.152, pp.563-78, 2001.

H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nat Rev Mol Cell Biol, vol.10, pp.513-538, 2009.

T. Welz, J. Wellbourne-wood, and E. Kerkhoff, Orchestration of cell surface proteins by Rab11, Trends Cell Biol, vol.24, pp.407-422, 2014.

C. C. Campa and E. Hirsch, Rab11 and phosphoinositides: A synergy of signal transducers in the control of vesicular trafficking, Advances in Biological Regulation, vol.63, pp.132-139, 2017.

W. Chen, Y. Feng, D. Chen, and A. Wandinger-ness, Rab11 is required for trans-golgi network-to-plasma membrane transport and a preferential target for GDP dissociation inhibitor, Mol. Biol. Cell, vol.9, pp.3241-3257, 1998.

C. Delevoye, S. Miserey-lenkei, G. Montagnac, F. Gilles-marsens, P. Paul-gilloteaux et al., Recycling endosome tubule morphogenesis from sorting endosomes requires the kinesin motor KIF13A, Cell Rep, vol.6, pp.445-454, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02735329

M. Schuh, An actin-dependent mechanism for long-range vesicle transport, Nat Cell Biol, vol.13, pp.1431-1437, 2011.

S. Takahashi, S. Kubo, K. Waguri, S. Yabashi, A. Shin et al., Rab11 regulates exocytosis of recycling vesicles at the plasma membrane, Journal of Cell Science, vol.125, pp.4049-4057, 2012.

S. Wu, S. Q. Mehta, F. Pichaud, H. J. Bellen, and F. A. Quiocho, Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo, Nat. Struct. Mol. Biol, vol.12, pp.879-85, 2005.

A. B. Fielding, E. Schonteich, J. Matheson, G. Wilson, X. Yu et al., Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis, EMBO J, vol.24, pp.3389-99, 2005.

C. J. Westlake, L. M. Baye, M. V. Nachury, K. J. Wright, K. E. Ervin et al., Primary cilia membrane assembly is initiated by Rab11 and transport protein particle II (TRAPPII) complex-dependent trafficking of Rabin8 to the centrosome, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.2759-64, 2011.

G. M. Wilson, A. B. Fielding, G. C. Simon, X. Yu, P. D. Andrews et al., The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis, Mol Biol Cell, vol.16, pp.849-860, 2005.

G. Assaker, D. Ramel, S. K. Wculek, M. Gonzá-lez-gaitá-n, and G. Emery, Spatial restriction of receptor tyrosine kinase activity through a polarized endocytic cycle controls border cell migration Proc, Natl. Acad. Sci. U. S. A, vol.107, pp.22558-63, 2010.

D. Kessler, G. C. Gruen, D. Heider, J. Morgner, H. Reis et al., The action of small GTPases Rab11 and Rab25 in vesicle trafficking during cell migration, Cell Physiol Biochem, vol.29, pp.647-56, 2012.

K. Kremer, D. Kamin, E. Rittweger, J. Wilkes, H. Flammer et al., An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes, PLoS Pathog, vol.9, 2013.

C. Agop-nersesian, B. Naissant, B. Rached, F. Rauch, M. Kretzschmar et al., Rab11A-controlled assembly of the inner membrane complex is required for completion of apicomplexan cytokinesis, PLOS Pathogens, vol.5, 2009.

J. E. Burke, A. J. Inglis, O. Perisic, G. R. Masson, S. H. Mclaughlin et al., Structures of PI4KIII? complexes show simultaneous recruitment of Rab11 and its effectors, Science, vol.344, pp.1035-1043, 2014.

C. W. Mcnamara, M. C. Lee, C. S. Lim, S. H. Lim, J. Roland et al., Targeting Plasmodium PI(4)K to eliminate malaria, Nature, vol.504, pp.248-253, 2013.

K. Venugopal, E. Werkmeister, N. Barois, J. M. Saliou, A. Poncet et al., Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division, PLoS Pathog, vol.13, p.1006331, 2017.

N. Andenmatten, S. Egarter, A. J. Jackson, N. Jullien, J. P. Herman et al., Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms, Nat Methods, vol.10, pp.125-132, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01772103

A. T. Heaslip, S. R. Nelson, and D. M. Warshaw, Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments, Mol Biol Cell, vol.27, pp.2080-2089, 2016.

Y. Wang, Y. Jeong, S. M. Jhiang, L. Yu, and C. H. Menq, Quantitative characterization of cell behaviors through cell cycle progression via automated cell tracking, PLoS One, vol.9, 2014.

A. Bougdour, E. Durandau, M. P. Brenier-pinchart, P. Ortet, M. Barakat et al., Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression, Cell Host Microbe, vol.13, pp.489-500, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839564

S. Pomel, F. C. Luk, and C. Beckers, Host cell egress and invasion induce marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites, PLoS Pathog, vol.4, 2008.

J. S. Buguliskis, F. Brossier, J. Shuman, and S. L. David, Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii, PLoS Pathog, vol.6, 2010.

F. Brossier, T. J. Jewett, L. D. Sibley, and S. Urban, A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma, Proc Natl Acad Sci U S A, vol.102, pp.4146-51, 2005.

L. O. Sangaré, T. D. Alayi, B. Westermann, A. Hovasse, F. Sindikubwabo et al., Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection, Nat Commun, vol.7, p.11191, 2016.

S. Gras, E. Jimenez-ruiz, C. M. Klinger, K. Schneider, A. Klingl et al., An endocyticsecretory cycle participates in Toxoplasma gondii in motility, PLoS Biol, vol.17, p.3000060, 2019.

S. Amiar, N. J. Katris, L. Berry, S. Dass, M. J. Shears et al., Division and adaptation to host nutritional environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling

S. Gras, A. Jackson, S. Woods, G. Pall, J. Whitelaw et al., Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress

, Wellcome Open Res, vol.2, p.32, 2017.

J. A. Whitelaw, F. Latorre-barragan, S. Gras, G. S. Pall, J. M. Leung et al., Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion, BMC Biol, vol.15, p.28100223, 2017.

J. M. Leung, Y. He, F. Zhang, Y. C. Hwang, E. Nagayasu et al., Stability and function of a putative microtubule-organizing center in the human parasite Toxoplasma gondii, Mol Biol Cell, vol.28, pp.1361-1378, 2017.

N. J. Katris, G. G. Van-dooren, P. J. Mcmillan, E. Hanssen, L. Tilley et al., The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma, PLoS Pathog, vol.10, p.1004074, 2014.

B. H. De-graaf, A. Y. Cheung, T. Andreyeva, K. Levasseur, M. Kieliszewski et al., Rab11 GTPase-Regulated Membrane Trafficking Is Crucial for Tip-Focused Pollen Tube Growth in Tobacco, Plant Cell, vol.17, pp.2564-2579, 2005.

C. P. Horgan and M. W. Mccaffrey, The dynamic Rab11-FIPs, Biochem Soc Trans, vol.37, pp.1032-1038, 2009.

B. B. Chu, L. Ge, C. Xie, Y. Zhao, H. H. Miao et al., Requirement of Myosin Vb?Rab11a?Rab11-FIP2 Complex in Cholesterol-regulated Translocation of NPC1L1 to the Cell Surface, J Biol Chem, vol.284, pp.22481-22490, 2009.

J. C. Schafer, N. W. Baetz, L. A. Lapierre, R. E. Mcrae, J. T. Roland et al., Rab11-FIP2 Interaction with MYO5B Regulates Movement of Rab11a-Containing Recycling Vesicles, Traffic, vol.15, pp.292-308, 2014.

J. Salogiannis and S. M. Reck-peterson, Hitchhiking: A Non-Canonical Mode of Microtubule-Based Transport, Trends Cell Biol, vol.27, pp.141-150, 2017.

S. Tomavo, C. Slomianny, M. Meissner, and V. B. Carruthers, Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion, PLoS Pathog, vol.9, 2013.

K. M. Brown, S. Long, and L. D. Sibley, Conditional Knockdown of Proteins Using Auxin-inducible Degron (AID) Fusions in Toxoplasma gondii, Bio Protoc, vol.8, 2018.

K. Venugopal and S. Marion, Secretory organelle trafficking in Toxoplasma gondii: A long story for a short travel, Int J Med Microbiol, vol.308, pp.751-760, 2018.

S. J. Fletcher and J. Z. Rappoport, Moving forward: polarised trafficking in cell migration, Trends Cell Biol, vol.20, pp.71-78, 2010.

A. T. Heaslip, M. Nishi, B. Stein, and K. Hu, The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase, PLoS Pathog, vol.7, 2011.

R. D. Díaz-martín, C. Mercier, C. T. Gó-mez-de-leó-n, R. M. Gonzá-lez, S. G. Pozos et al., The dense granule protein 8 (GRA8) is a component of the sub-pellicular cytoskeleton in Toxoplasma gondii

, Parasitol Res, vol.118, pp.1899-1918, 2019.

E. Labruyère, M. Lingnau, C. Mercier, and L. D. Sibley, Differential membrane targeting of the secretory proteins GRA4 and GRA6 within the parasitophorous vacuole formed by Toxoplasma gondii. Molecular and Biochemical Parasitology, vol.102, pp.311-324, 1999.

D. Rosario, M. Periz, J. Pavlou, G. Lyth, O. Latorre-barragan et al., Apicomplexan F-actin is required for efficient nuclear entry during host cell invasion, EMBO Rep, vol.20, p.48896, 2019.