M. E. Macdonald, C. M. Ambrose, M. P. Duyao, R. H. Myers, C. Lin et al., A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes, Cell, vol.72, pp.971-983, 1993.

E. Cattaneo, D. Rigamonti, D. Goffredo, C. Zuccato, F. Squitieri et al., Loss of normal huntingtin function: new developments in Huntington's disease research, Trends Neurosci, vol.24, pp.182-188, 2001.

J. Klempí?, O. Klempí?ová, J. ?tochl, N. ?pa?ková, and J. Roth, The relationship between impairment of voluntary movements and cognitive impairment in Huntington's disease, J. Neurol, vol.256, pp.1629-1633, 2009.

E. B. Clabough, Huntington's Disease: The Past, Present, and future search for Disease Modifiers, Yale J. Biol. Med, vol.86, 2013.

K. D. Fink, P. Deng, A. Torrest, H. Stewart, K. Pollock et al., Developing stem cell therapies for juvenile and adult-onset Huntington's disease, Regen. Med, vol.10, pp.623-646, 2015.

S. Ramaswamy and J. H. Kordower, Gene therapy for Huntington's disease, Neurobiol. Dis, vol.48, pp.243-254, 2012.

B. R. Snyder, A. M. Chiu, D. J. Prockop, and A. W. Chan, Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington's disease, PloS One, vol.5, 2010.

G. J. Delcroix, . .-r, E. Garbayo, L. Sindji, O. Thomas et al., The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats, Biomaterials, vol.32, pp.1560-1573, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00541842

E. M. André, C. Passirani, B. Seijo, A. Sanchez, and C. N. Montero-menei, Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease, Biomaterials, vol.83, pp.347-362, 2016.

D. F. Emerich, C. K. Cain, C. Greco, J. A. Saydoff, Z. Y. Hu et al., Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington's disease, Cell Transplant, pp.249-266, 1997.

Y. Jiang, L. Hailong, H. Shanshan, H. Tan, Y. Zhang et al., Bone marrow mesenchymal stem cells can improve the motor function of a Huntington's disease rat model, Neurol. Res, pp.331-337, 2011.

Y. Zheng, C. Huang, F. Liu, H. Lin, X. Yang et al., Comparison of the neuronal differentiation abilities of bone marrow-derived and adipose tissue-derived mesenchymal stem cells, Mol. Med. Rep, vol.16, pp.3877-3886, 2017.

N. Ballas and G. Mandel, The many faces of REST oversee epigenetic programming of neuronal genes, Curr. Opin. Neurobiol, vol.15, pp.500-506, 2005.

N. Ballas, C. Grunseich, D. D. Lu, J. C. Speh, and G. Mandel, REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis, Cell, vol.121, pp.645-657, 2005.

Y. Yang, Y. Li, Y. Lv, S. Zhang, L. Chen et al., NRSF silencing induces neuronal differentiation of human mesenchymal stem cells, Exp. Cell Res, vol.314, pp.2257-2265, 2008.

Z. F. Chen, A. J. Paquette, and D. J. Anderson, NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis, Nat. Genet, vol.20, pp.136-142, 1998.

B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, and J. P. Benoit, A novel phase inversion-based process for the preparation of lipid nanocarriers, Pharm. Res, vol.19, pp.875-880, 2002.

M. Morille, T. Montier, P. Legras, N. Carmoy, P. Brodin et al., Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting, Biomaterials, vol.31, pp.321-329, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00491402

A. Paillard, F. Hindré, C. Vignes-colombeix, J. Benoit, and E. Garcion, The importance of endo-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability, Biomaterials, vol.31, pp.7542-7554, 2010.

G. D'ippolito, Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential, J. Cell Sci, vol.117, pp.2971-2981, 2004.

S. Roche, G. Ippolito, L. A. Gomez, T. Bouckenooghe, S. Lehmann et al., Comparative analysis of protein expression of three stem cell populations: Models of cytokine delivery system in vivo, Int. J. Pharm, vol.440, pp.72-82, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00802595

N. Daviaud, E. Garbayo, L. Sindji, A. Martinez-serrano, P. C. Schiller et al., Survival, Differentiation, and Neuroprotective Mechanisms of Human Stem Cells Complexed With Neurotrophin-3-Releasing Pharmacologically Active Microcarriers in an Ex Vivo Model of Parkinson's Disease, Stem Cells Transl. Med, vol.4, pp.670-684, 2015.

G. J. Delcroix, . .-r, K. M. Curtis, P. C. Schiller, and C. N. Montero-menei, EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, Differentiation, vol.80, pp.213-227, 2010.

E. Garbayo, A. P. Raval, K. M. Curtis, D. Della-morte, L. A. Gomez et al., Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers: BMMs enhance MIAMI cell protection in cerebral ischemia, J. Neurochem, vol.119, pp.972-988, 2011.

V. M. Tatard, G. Ippolito, S. Diabira, A. Valeyev, J. Hackman et al., Neurotrophin-directed differentiation of human adult marrow stromal cells to dopaminergic-like neurons, vol.40, pp.360-373, 2007.

V. M. Tatard and L. Sindji,

A. Aubert-pouëssel, J. Colleau, J. Benoit, and C. N. Montero-menei, Pharmacologically active microcarriers releasing glial cell line-derived neurotrophic factor: Survival and differentiation of embryonic dopaminergic neurons after grafting in hemiparkinsonian rats, Biomaterials, vol.28, 1978.

V. M. Tatard, V. M. Benoit, J. P. , and M. P. , Montero-Menei CN In vivo evaluation of pharmacologically active microcarriers releasing nerve growth factor and conveying PC12 cells, Cell Transplant, vol.13, pp.573-583, 2004.

M. Morille, T. Van-thanh, X. Garric, J. Cayon, J. Coudane et al., New PLGA-P188-PLGA matrix enhances TGF-?3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells, J. Control. Release Off. J. Control. Release Soc, vol.170, pp.99-110, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881128

J. Karam, F. Bonafè, L. Sindji, C. Muscari, and C. N. Montero-menei, Adipose-derived stem cell adhesion on laminin-coated microcarriers improves commitment toward the cardiomyogenic lineage, J. Biomed. Mater. Res. A, vol.103, pp.1828-1839, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392452

S. Kandalam, L. Sindji, G. J. Delcroix, . .-r, F. Violet et al., Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement, Acta Biomater, vol.49, pp.167-180, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01845036

D. A. Simmons, C. S. Rex, L. Palmer, V. Pandyarajan, V. Fedulov et al., Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice, Proc. Natl. Acad. Sci, vol.106, pp.4906-4911, 2009.

M. Baydyuk and B. Xu, BDNF signaling and survival of striatal neurons, Front. Cell. Neurosci, 2014.

C. Zuccato, Loss of Huntingtin-Mediated BDNF Gene Transcription in Huntington's Disease, Science, vol.293, pp.493-498, 2001.

J. M. Canals, J. R. Pineda, J. F. Torres-peraza, M. Bosch, R. Martín-ibañez et al., Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.7727-7739, 2004.

A. P. Kells, R. A. Henry, and B. Connor, AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment, Gene Ther, vol.15, pp.966-977, 2008.

J. Terzi? and M. Saraga-babi?, Expression pattern of PAX3 and PAX6 genes during human embryogenesis, Int. J. Dev. Biol, vol.43, pp.501-508, 1999.

S. Garel, K. Yun, R. Grosschedl, and J. L. Rubenstein, The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice, vol.129, pp.5621-5634, 2002.

E. M. Andre, A. Pensado, P. Resnier, L. Braz, A. R. Da-costa et al., Characterization and comparison of two novel nanosystems associated with siRNA for cellular therapy, Int. J. Pharm, vol.497, pp.255-267, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02616010

E. M. André, N. Daviaud, L. Sindji, J. Cayon, R. Perrot et al., A novel ex vivo Huntington's disease model for studying GABAergic neurons and cell grafts by laser microdissection, PLoS ONE, vol.13, 2018.

P. Resnier, P. Lequinio, N. Lautram, E. André, C. Gaillard et al., Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma, Biotechnol. J, vol.9, pp.1389-1401, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02641170

L. Aubry, A. Bugi, N. Lefort, F. Rousseau, M. Peschanski et al., Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats, Proc. Natl. Acad. Sci, vol.105, pp.16707-16712, 2008.

L. Ma, B. Hu, Y. Liu, S. C. Vermilyea, H. Liu et al., Human Embryonic Stem Cell-Derived GABA Neurons Correct Locomotion Deficits in Quinolinic Acid-Lesioned Mice, Cell Stem Cell, vol.10, pp.455-464, 2012.

K. Palm, N. Belluardo, M. Metsis, and T. Timmusk, Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene, J. Neurosci. Off. J. Soc. Neurosci, vol.18, pp.1280-1296, 1998.

S. Mruthyunjaya, R. Manchanda, R. Godbole, R. Pujari, A. Shiras et al., Laminin-1 induces neurite outgrowth in human mesenchymal stem cells in serum/differentiation factors-free conditions through activation of FAK-MEK/ERK signaling pathways, Biochem. Biophys. Res. Commun, vol.391, pp.43-48, 2010.

K. Brännvall, K. Bergman, U. Wallenquist, S. Svahn, T. Bowden et al., Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix, J. Neurosci. Res, vol.85, pp.2138-2146, 2007.

B. J. Bhattacharyya, G. Banisadr, H. Jung, D. Ren, D. G. Cronshaw et al., The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus, J. Neurosci. Off. J. Soc. Neurosci, vol.28, pp.6720-6730, 2008.

Y. Yanagawa, K. Iwabuchi, and K. Onoé, Enhancement of stromal cell-derived factor-1alpha-induced chemotaxis for CD4/8 double-positive thymocytes by fibronectin and laminin in mice, Immunology, vol.104, pp.43-49, 2001.

K. Jin, Y. Zhu, Y. Sun, X. O. Mao, L. Xie et al., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo, Proc. Natl. Acad. Sci, vol.99, pp.11946-11950, 2002.

A. Luttun, M. Tjwa, and P. Carmeliet, Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders, Ann. N. Y. Acad. Sci, vol.979, pp.80-93, 2002.

Y. Diao, F. Cui, S. Yan, Z. Chen, L. Lian et al., Nerve Growth Factor Promotes Angiogenesis and Skeletal Muscle Fiber Remodeling in a Murine Model of Hindlimb Ischemia, Chin. Med. J. (Engl, vol.129, pp.313-319, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI