W. C. Smith, W. Van-brakel, T. Gillis, P. Saunderson, and J. H. Richardus, The missing millions: a threat to the elimination of leprosy, PLoS Negl Trop Dis, vol.9, issue.4, p.4408099, 2015.

J. Gaschignard, A. V. Grant, N. V. Thuc, M. Orlova, A. Cobat et al., Pauci-and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases, PLoS Negl Trop Dis, vol.10, issue.5, p.4878860, 2016.

S. T. Cole, K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson et al., Massive gene decay in the leprosy bacillus, Nature, vol.409, issue.6823, pp.1007-1018, 2001.

M. Monot, N. Honore, T. Garnier, R. Araoz, J. Y. Coppee et al., On the origin of leprosy, Epub 2005/05/17, vol.308, pp.1040-1042, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00204117

V. M. Fava, M. Dallmann-sauer, and E. Schurr, Genetics of leprosy: today and beyond, Hum Genet, p.31713021, 2019.

M. T. Mira, A. Alcais, N. Van-thuc, V. H. Thai, N. T. Huong et al., Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population, Nat Genet, vol.33, issue.3, pp.412-417, 2003.

M. T. Mira, A. Alcais, V. T. Nguyen, M. O. Moraes, D. Flumeri et al., Susceptibility to leprosy is associated with PARK2 and PACRG, Nature, vol.427, issue.6975, 2004.

A. Alcais, A. Alter, G. Antoni, M. Orlova, V. T. Nguyen et al., Stepwise replication identifies a lowproducing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy, Nat Genet, vol.39, issue.4, pp.517-539, 2007.

Z. Wang, Y. Sun, X. Fu, G. Yu, C. Wang et al., A large-scale genome-wide association and metaanalysis identified four novel susceptibility loci for leprosy, Nat Commun, vol.7, p.5172377, 2016.

S. H. Wong, S. Gochhait, D. Malhotra, F. H. Pettersson, Y. Y. Teo et al., Leprosy and the adaptation of human toll-like receptor 1, PLoS Pathog, vol.6, 2010.

H. Liu, Z. Wang, Y. Li, G. Yu, X. Fu et al., Genome-Wide Analysis of Protein-Coding Variants in Leprosy, J Invest Dermatol, vol.137, issue.12, pp.2544-51, 2017.

Z. Wang, Z. Mi, H. Wang, L. Sun, G. Yu et al., Discovery of 4 exonic and 1 intergenic novel susceptibility loci for leprosy, Clin Genet, vol.94, issue.2, pp.259-63, 2018.

D. Wang, Y. Fan, M. Malhi, R. Bi, Y. Wu et al., Missense Variants in HIF1A and LACC1 Contribute to Leprosy Risk in Han Chinese, Am J Hum Genet, vol.102, issue.5, p.5986702, 2018.

M. Dallmann-sauer, W. Correa-macedo, and E. Schurr, Human genetics of mycobacterial disease, Mamm Genome, vol.29, issue.7-8, p.6132723, 2018.

G. Cambri and M. T. Mira, Genetic Susceptibility to Leprosy-From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Front Immunol, vol.9, p.6062607, 2018.

A. Cobat, L. Abel, A. Alcais, and E. Schurr, A general efficient and flexible approach for genome-wide association analyses of imputed genotypes in family-based designs, Genet Epidemiol, vol.38, issue.6, pp.560-71, 2014.

A. V. Grant, A. Alter, N. T. Huong, M. Orlova, N. Van-thuc et al., Crohn's disease susceptibility genes are associated with leprosy in the Vietnamese population, J Infect Dis, vol.206, issue.11, pp.1763-1770, 2012.

V. M. Fava, A. Cobat, N. Van-thuc, A. C. Latini, M. M. Stefani et al., Association of TNFSF8 regulatory variants with excessive inflammatory responses but not leprosy per se, J Infect Dis, vol.211, issue.6, pp.968-77, 2014.

V. M. Fava, J. Manry, A. Cobat, M. Orlova, N. Van-thuc et al., A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy, PLoS Negl Trop Dis, vol.10, issue.2, p.4412, 2016.

V. M. Fava, Y. Z. Xu, G. Lettre, N. Van-thuc, M. Orlova et al., Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson's disease, Proc Natl Acad Sci, vol.116, issue.31, pp.15616-15640, 2019.

P. Central and P. ,

V. M. Fava, J. Manry, A. Cobat, M. Orlova, N. Van-thuc et al., A genome wide association study identifies a lncRna as risk factor for pathological inflammatory responses in leprosy, PLoS Genet, vol.13, issue.2, p.5340414, 2017.

Y. Y. Teo, M. Inouye, K. S. Small, R. Gwilliam, P. Deloukas et al., A genotype calling algorithm for the Illumina BeadArray platform, Bioinformatics, vol.23, issue.20, pp.2741-2747, 2007.

S. Purcell and C. C. Plink, Available from: www.cog-genomics.org/plink/1, vol.1

O. Delaneau, J. Marchini, and J. F. Zagury, A linear complexity phasing method for thousands of genomes, Nat Methods, vol.9, issue.2, pp.179-81, 2011.

J. O'connell, D. Gurdasani, O. Delaneau, N. Pirastu, S. Ulivi et al., A general approach for haplotype phasing across the full spectrum of relatedness, PLoS Genet, vol.10, issue.4, p.3990520, 2014.

J. Marchini, B. Howie, S. Myers, G. Mcvean, and P. Donnelly, A new multipoint method for genome-wide association studies by imputation of genotypes, Nat Genet, vol.39, issue.7, pp.906-919, 2007.

C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell et al., Second-generation PLINK: rising to the challenge of larger and richer datasets, Gigascience, vol.4, p.4342193, 2015.

M. A. Depristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire et al., A framework for variation discovery and genotyping using next-generation DNA sequencing data, Nat Genet, vol.43, issue.5, p.3083463, 2011.

N. M. Laird, S. Horvath, and X. Xu, Implementing a unified approach to family-based tests of association, Genet Epidemiol, vol.19, issue.1, pp.36-42, 2000.

H. J. Cordell, B. J. Barratt, and D. G. Clayton, Case/pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects, Genet Epidemiol, vol.26, issue.3, pp.167-85, 2004.

A. V. Grant, E. Baghdadi, J. Sabri, A. El-azbaoui, S. Alaoui-tahiri et al., Agedependent association between pulmonary tuberculosis and common TOX variants in the 8q12-13 linkage region, Am J Hum Genet, vol.92, issue.3, p.3591857, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00878595

A. V. Grant, A. Sabri, A. Abid, A. Rhorfi, I. Benkirane et al., A genome-wide association study of pulmonary tuberculosis in Morocco, Hum Genet, vol.135, issue.3, p.5042142, 2016.

W. Control and C. , Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls, Nature, vol.447, issue.7145, pp.661-78, 2007.

K. Konrad, J. , F. Laurent, C. , T. Grace et al., Variation across 141,456 human exomes and genomes reveals the spectrum of loss-offunction intolerance across human protein-coding genes. bioRXiv, 2019.

M. J. Machiela and S. J. Chanock, LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants, Bioinformatics, vol.31, issue.21, pp.3555-3562, 2015.

P. Central and P. , , p.4626747

X. Zhang, Y. Cheng, Q. Zhang, X. Wang, Y. Lin et al., Meta-Analysis Identifies Major Histocompatiblity Complex Loci in or Near HLA-DRB1, HLA-DQA1, HLA-C as Associated with Leprosy in Chinese Han Population, J Invest Dermatol, vol.139, issue.4, pp.957-60, 2019.

L. R. Jarduli, A. M. Sell, P. G. Reis, E. A. Sippert, C. M. Ayo et al., Role of HLA, KIR, MICA, and cytokines genes in leprosy, Biomed Res Int, p.3722889, 2013.

B. Krause-kyora, M. Nutsua, L. Boehme, F. Pierini, D. D. Pedersen et al., Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans, Nat Commun, vol.9, issue.1, 2018.

V. Matzaraki, V. Kumar, C. Wijmenga, and A. Zhernakova, The MHC locus and genetic susceptibility to autoimmune and infectious diseases, Genome Biol, vol.18, issue.1, p.5406920, 2017.

T. Parks, K. Elliott, T. Lamagni, K. Auckland, A. J. Mentzer et al., Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus, Genes Immun, p.31462703, 2019.

L. B. Barreiro and L. Quintana-murci, From evolutionary genetics to human immunology: how selection shapes host defence genes, Nat Rev Genet, vol.11, issue.1, pp.17-30, 2010.

J. Manry, Q. B. Vincent, C. Johnson, M. Chrabieh, L. Lorenzo et al., Genome-wide association study of Buruli ulcer in rural Benin highlights role of two LncRNAs and the autophagy pathway, Commun Biol, vol.3, issue.1, p.177, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02573225

A. Alter, N. T. Huong, M. Singh, M. Orlova, N. Van-thuc et al., Human leukocyte antigen class I region single-nucleotide polymorphisms are associated with leprosy susceptibility in Vietnam and India, J Infect Dis, vol.203, issue.9, p.3069725, 2011.

Y. Luo, Z. Na, and S. A. Slavoff, P-Bodies: Composition, Properties, and Functions, Biochemistry, vol.57, issue.17, pp.2424-2455, 2018.

P. Central and P. , , p.6296482

R. Parker and U. Sheth, P bodies and the control of mRNA translation and degradation, Mol Cell, vol.25, issue.5, pp.635-681, 2007.

X. Yu, B. Li, G. J. Jang, S. Jiang, D. Jiang et al., Orchestration of Processing Body Dynamics and mRNA Decay in Arabidopsis Immunity, Cell Rep, vol.28, issue.8, p.6716526, 2019.

A. Radzisheuskaya, C. Gle, B. Santos, R. L. Theunissen, T. W. Castro et al., A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages, Nat Cell Biol, vol.15, issue.6, p.3671976, 2013.

S. H. Wong, A. V. Hill, and F. O. Vannberg, India-Africa-United Kingdom Leprosy Genetics C. Genomewide association study of leprosy, N Engl J Med, vol.362, issue.15, pp.1446-1453, 2010.

J. H. Xiong, C. Mao, X. W. Sha, J. Z. Wang, H. Liu et al., Association between genetic variants in NOD2, C13orf31, and CCDC122 genes and leprosy among the Chinese Yi population, Int J Dermatol, vol.55, issue.1, pp.65-74, 2016.

J. C. Barrett, S. Hansoul, D. L. Nicolae, J. H. Cho, R. H. Duerr et al., Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease, Nat Genet, vol.40, issue.8, pp.955-62, 2008.

A. Franke, D. P. Mcgovern, J. C. Barrett, K. Wang, G. L. Radford-smith et al., Genome-wide metaanalysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nat Genet, vol.42, issue.12, p.3299551, 2010.

L. Jostins, S. Ripke, R. K. Weersma, R. H. Duerr, D. P. Mcgovern et al., Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease, Nature, vol.491, issue.7422, p.3491803, 2012.

J. Z. Liu, S. Van-sommeren, H. Huang, S. C. Ng, R. Alberts et al., Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations, Nat Genet, vol.47, issue.9, pp.979-86, 2015.

M. Kircher, D. M. Witten, P. Jain, B. J. O'roak, G. M. Cooper et al., A general framework for estimating the relative pathogenicity of human genetic variants, Nat Genet, vol.46, issue.3, p.3992975, 2014.

P. Rentzsch, D. Witten, G. M. Cooper, J. Shendure, and M. Kircher, CADD: predicting the deleteriousness of variants throughout the human genome, Nucleic Acids Res, vol.47, issue.D1, p.6323892, 2019.

M. Z. Cader, K. Boroviak, Q. Zhang, G. Assadi, S. L. Kempster et al., C13orf31 (FAMIN) is a central regulator of immunometabolic function, Nat Immunol, vol.17, issue.9, pp.1046-56, 2016.

A. Lahiri, M. Hedl, J. Yan, and C. Abraham, Human LACC1 increases innate receptor-induced responses and a LACC1 disease-risk variant modulates these outcomes, Nat Commun, vol.8, p.15614, 2017.

C. A. Anderson, G. Boucher, C. W. Lees, A. Franke, D. 'amato et al., Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47, Nat Genet, vol.43, issue.3, pp.246-52, 2011.

P. Central and P. , , p.3084597

S. Raychaudhuri, R. M. Plenge, E. J. Rossin, A. C. Ng, C. Schizophrenia et al., Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions, PLoS Genet, vol.5, issue.6, 2009.

S. Boisson-dupuis, N. Ramirez-alejo, Z. Li, P. E. Rao, G. Kerner et al., Tuberculosis and impaired IL-23-dependent IFN-gamma immunity in humans homozygous for a common TYK2 missense variant, Sci Immunol, vol.3, issue.30, 2018.

R. Martinez-barricarte, J. G. Markle, C. S. Ma, E. K. Deenick, N. Ramirez-alejo et al., Human IFNgamma immunity to mycobacteria is governed by both IL-12 and IL-23, Sci Immunol, vol.3, issue.30, p.6380365, 2018.

J. Bustamante, S. Boisson-dupuis, L. Abel, and J. L. Casanova, Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity, Semin Immunol, vol.26, issue.6, p.4357480, 2014.

C. International-genetics-of-ankylosing-spondylitis, A. Cortes, J. Hadler, J. P. Pointon, P. C. Robinson et al., Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci, Nat Genet, vol.45, issue.7, p.3757343, 2013.

C. Terao, H. Yoshifuji, A. Kimura, T. Matsumura, K. Ohmura et al., Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population, Am J Hum Genet, vol.93, issue.2, p.3738822, 2013.

T. Nakajima, H. Yoshifuji, M. Shimizu, K. Kitagori, K. Murakami et al., A novel susceptibility locus in the IL12B region is associated with the pathophysiology of Takayasu arteritis through IL-12p40 and IL-12p70 production, Arthritis Res Ther, vol.19, issue.1, p.5585951, 2017.