J. C. Kagan, V. G. Magupalli, and H. Wu, SMOCs: supramolecular organizing centres that control innate immunity, Nat Rev Immunol, vol.14, issue.12, pp.821-827, 2014.

T. Ve, S. J. Williams, and B. Kobe, Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains, Apoptosis, vol.20, issue.2, pp.250-61, 2015.

Q. Zhang, C. M. Zmasek, X. Cai, and A. Godzik, TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog, Dev Comp Immunol, vol.35, issue.4, pp.461-469, 2011.

C. V. Rosadini and J. C. Kagan, Microbial strategies for antagonizing Toll-like-receptor signal transduction, Curr Opin Immunol, vol.32, pp.61-70, 2015.

C. Cirl, A. Wieser, M. Yadav, S. Duerr, S. Schubert et al., Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins, Nat Med, vol.14, issue.4, pp.399-406, 2008.

M. Yadav, J. Zhang, H. Fischer, W. Huang, N. Lutay et al., Inhibition of TIR domain signaling by TcpC: MyD88-dependent and independent effects on Escherichia coli virulence, PLoS Pathog, vol.6, issue.9, 2010.

S. Patot, P. R. Imbert, J. Baude, M. Simoes, P. Campergue et al., The TIR Homologue Lies near Resistance Genes in Staphylococcus aureus, Coupling Modulation of Virulence and Antimicrobial Susceptibility, PLoS Pathog, vol.13, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01911108

P. R. Imbert, A. Louche, J. B. Luizet, T. Grandjean, S. Bigot et al., A Pseudomonas aeruginosa TIR effector mediates immune evasion by targeting UBAP1 and TLR adaptors, EMBO J, vol.36, issue.13, pp.1869-87, 2017.

A. Waldhuber, M. Puthia, A. Wieser, C. Cirl, S. Durr et al., Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation, J Clin Invest, vol.126, issue.7, pp.2425-2461, 2016.

K. Essuman, D. W. Summers, Y. Sasaki, X. Mao, A. Diantonio et al., The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD(+) Cleavage Activity that Promotes Pathological Axonal Degeneration, Neuron, vol.93, issue.6, pp.1334-1377, 2017.

S. Horsefield, H. Burdett, X. Zhang, M. K. Manik, Y. Shi et al., NAD(+) cleavage activity by animal and plant TIR domains in cell death pathways, Science, vol.365, issue.6455, pp.793-802, 2019.

K. Essuman, D. W. Summers, Y. Sasaki, X. Mao, A. Yim et al., TIR Domain Proteins Are an Ancient Family of NAD(+)-Consuming Enzymes, Curr Biol, vol.28, issue.3, pp.421-451, 2018.

S. P. Salcedo, M. I. Marchesini, H. Lelouard, E. Fugier, G. Jolly et al., Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btp1, PLoS Pathog, vol.4, issue.2, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294210

S. P. Salcedo, M. I. Marchesini, C. Degos, M. Terwagne, V. Bargen et al., BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions, Front Cell Infect Microbiol, vol.3, 2013.

G. K. Radhakrishnan, Q. Yu, J. S. Harms, and G. A. Splitter, Brucella TIR Domain-containing Protein Mimics Properties of the Toll-like Receptor Adaptor Protein TIRAP, J Biol Chem, vol.284, issue.15, pp.9892-9900, 2009.

D. Sengupta, A. Koblansky, J. Gaines, T. Brown, A. P. West et al., Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter, MAL. J Immunol, vol.184, issue.2, pp.956-64, 2009.

A. Chaudhary, K. Ganguly, S. Cabantous, G. S. Waldo, S. N. Micheva-viteva et al., The Brucella TIRlike protein TcpB interacts with the death domain of MyD88, Biochem Biophys Res Commun, vol.417, issue.1, pp.299-304, 2011.

G. K. Radhakrishnan, J. S. Harms, and G. A. Splitter, Modulation of microtubule dynamics by a TIR domain protein from the intracellular pathogen Brucella melitensis, Biochem J, vol.439, issue.1, pp.79-83, 2011.

C. Felix, B. Kaplan-turkoz, S. Ranaldi, T. Koelblen, L. Terradot et al., The Brucella TIR domain containing proteins BtpA and BtpB have a structural WxxxE motif important for protection against microtubule depolymerisation, Cell Commun Signal, vol.12, p.25304327, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01205296

J. A. Smith, M. Khan, D. D. Magnani, J. S. Harms, M. Durward et al., Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages, PLoS Pathog, vol.9, issue.12, 2013.

T. A. Vida and S. D. Emr, A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast, J Cell Biol, vol.128, issue.5, pp.779-92, 1995.

J. C. Harrison, E. S. Bardes, Y. Ohya, and D. J. Lew, A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint, Nat Cell Biol, vol.3, issue.4, pp.417-437, 2001.

I. Rodriguez-escudero, R. Rotger, V. J. Cid, and M. Molina, Inhibition of Cdc42-dependent signalling in Saccharomyces cerevisiae by phosphatase-dead SigD/SopB from Salmonella typhimurium, Microbiology, vol.152, p.17074912, 2006.

P. Fernandez-pinar, A. Aleman, J. Sondek, H. G. Dohlman, M. Molina et al., The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae, Mol Biol Cell, vol.23, issue.22, pp.4430-4473, 2012.

J. L. Brewster and M. C. Gustin, Hog1: 20 years of discovery and impact, Sci Signal, vol.7, issue.343, 2014.

I. Rodriguez-escudero, F. M. Roelants, J. Thorner, C. Nombela, M. Molina et al., Reconstitution of the mammalian PI3K/PTEN/Akt pathway in yeast, Epub 2005/05/26, vol.390, pp.613-636, 2005.

F. Randez-gil, J. A. Prieto, and P. Sanz, The expression of a specific 2-deoxyglucose-6P phosphatase prevents catabolite repression mediated by 2-deoxyglucose in yeast, Curr Genet, vol.28, issue.2, pp.101-108, 1995.

R. Y. Schroeder, A. Zhu, H. Eubel, K. Dahncke, and C. P. Witte, The ribokinases of Arabidopsis thaliana and Saccharomyces cerevisiae are required for ribose recycling from nucleotide catabolism, which in plants is not essential to survive prolonged dark stress, New Phytol, vol.217, issue.1, pp.233-277, 2018.

A. Andres-pons, I. Rodriguez-escudero, A. Gil, A. Blanco, A. Vega et al., In vivo functional analysis of the counterbalance of hyperactive phosphatidylinositol 3-kinase p110 catalytic oncoproteins by the tumor suppressor PTEN, Cancer Res, vol.67, issue.20, pp.9731-9740, 2007.

B. Kaplan-turkoz, T. Koelblen, C. Felix, M. P. Candusso, D. O'callaghan et al., Structure of the Toll/interleukin 1 receptor (TIR) domain of the immunosuppressive Brucella effector BtpA/Btp1/ TcpB, FEBS Lett, vol.587, issue.21, pp.3412-3418, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972337

Y. Yang and A. A. Sauve, NAD(+) metabolism: Bioenergetics, signaling and manipulation for therapy, Biochim Biophys Acta, vol.1864, issue.12, pp.1787-800, 2016.

C. Canto, K. J. Menzies, and J. Auwerx, NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus, Cell Metab, vol.22, issue.1, pp.31-53, 2015.

J. Iqbal and M. Zaidi, TNF regulates cellular NAD+ metabolism in primary macrophages, Biochem Biophys Res Commun, vol.342, issue.4, pp.1312-1320, 2006.

A. J. Al-shabany, A. J. Moody, A. D. Foey, and R. A. Billington, Intracellular NAD+ levels are associated with LPSinduced TNF-alpha release in pro-inflammatory macrophages, Biosci Rep, vol.36, issue.1, 2016.

A. P. Gomes, N. L. Price, A. J. Ling, J. J. Moslehi, M. K. Montgomery et al., Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging, Cell, vol.155, issue.7, pp.1624-1662, 2013.

B. Kelly and L. A. O'neill, Metabolic reprogramming in macrophages and dendritic cells in innate immunity, Cell Res, vol.25, issue.7, pp.771-84, 2015.

D. Pajuelo, N. Gonzalez-juarbe, U. Tak, J. Sun, C. J. Orihuela et al., NAD(+) Depletion Triggers Macrophage Necroptosis, a Cell Death Pathway Exploited by Mycobacterium tuberculosis, Cell Rep, vol.24, issue.2, pp.429-469, 2018.

E. Fugier, S. P. Salcedo, C. De-chastellier, M. Pophillat, A. Muller et al., The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication, PLoS Pathog, vol.5, issue.6, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00431863

M. I. Marchesini, M. Seijo, S. M. Guaimas, F. F. Comerci, and D. J. , A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle, Front Cell Infect Microbiol, vol.6, p.153, 2016.

D. M. Czyz, J. W. Willett, and S. Crosson, Brucella abortus Induces a Warburg Shift in Host Metabolism That Is Linked to Enhanced Intracellular Survival of the Pathogen, J Bacteriol, issue.15, p.199, 2017.

M. N. Xavier, M. G. Winter, A. M. Spees, A. B. Den-hartigh, K. Nguyen et al., PPARgamma-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages, Cell Host Microbe, vol.14, issue.2, 2013.

J. Alves-silva, I. P. Tavares, E. S. Guimaraes, C. Franco, M. M. Figueiredo et al., Modulation of Microtubule Dynamics Affects Brucella abortus Intracellular Survival, Pathogen-Containing Vacuole Maturation, and Pro-inflammatory Cytokine Production in Infected Macrophages. Front Microbiol, vol.8, 2017.

A. D. Bershadsky and V. I. Gelfand, ATP-dependent regulation of cytoplasmic microtubule disassembly, Proc Natl Acad Sci U S A, vol.78, issue.6, pp.3610-3613, 1981.

Q. Yu, L. Dong, Y. Li, and G. Liu, SIRT1 and HIF1alpha signaling in metabolism and immune responses, Cancer Lett, vol.418, pp.20-26, 2018.

C. Y. Cheng, N. M. Gutierrez, M. B. Marzuki, X. Lu, T. W. Foreman et al., Host sirtuin 1 regulates mycobacterial immunopathogenesis and represents a therapeutic target against tuberculosis, Sci Immunol, vol.2, issue.9, 2017.

U. Tak, J. Vlach, A. Garza-garcia, D. William, O. Danilchanka et al., The tuberculosis necrotizing toxin is an NAD(+) and NADP(+) glycohydrolase with distinct enzymatic properties, J Biol Chem, vol.294, issue.9, pp.3024-3060, 2019.

R. Ganesan, N. J. Hos, S. Gutierrez, J. Fischer, J. M. Stepek et al., Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy, PLoS Pathog, vol.13, issue.2, 2017.

R. S. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, issue.1, pp.19-27, 1989.

B. J. Thomas and R. Rothstein, Elevated recombination rates in transcriptionally active DNA, Cell, vol.56, issue.4, p.2645056, 1989.

I. Rodriguez-escudero, A. Andres-pons, R. Pulido, M. Molina, and V. J. Cid, Phosphatidylinositol 3-kinasedependent activation of mammalian protein kinase B/Akt in Saccharomyces cerevisiae, an in vivo model for the functional study of Akt mutations, J Biol Chem, vol.284, issue.20, pp.13373-83, 2009.

V. J. Cid, M. J. Shulewitz, K. L. Mcdonald, and J. Thorner, Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle, Mol Biol Cell, vol.12, issue.6, pp.1645-69, 2001.

H. Martin, J. Arroyo, M. Sanchez, M. Molina, and C. Nombela, Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C, Mol Gen Genet, vol.241, issue.1-2, pp.177-84, 1993.

J. L. Sporty, M. M. Kabir, K. W. Turteltaub, T. Ognibene, S. J. Lin et al., Single sample extraction protocol for the quantification of NAD and NADH redox states in Saccharomyces cerevisiae, J Sep Sci, vol.31, issue.18, pp.3202-3213, 2008.

E. Blasi, B. J. Mathieson, L. Varesio, J. L. Cleveland, P. A. Borchert et al., Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus, Nature, vol.318, issue.6047, pp.667-70, 1985.