T. Butler, Yersinia infections: centennial of the discovery of the plague bacillus, Clin Infect Dis, vol.19, issue.4, pp.655-61, 1994.

B. J. Hinnebusch, A. E. Rudolph, P. Cherepanov, J. E. Dixon, T. G. Schwan et al., Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector, Science, vol.296, issue.5568, pp.733-738, 2002.

B. J. Hinnebusch, C. O. Jarrett, and D. M. Bland, Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annual review of microbiology, vol.71, pp.215-247, 2017.

V. Vadyvaloo, C. Jarrett, D. E. Sturdevant, F. Sebbane, and B. J. Hinnebusch, Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis, PLoS pathogens, vol.6, issue.2, p.1000783, 2010.

W. Zhou, C. W. Russell, K. L. Johnson, R. D. Mortensen, and D. L. Erickson, Gene expression analysis of Xenopsylla cheopis (Siphonaptera: Pulicidae) suggests a role for reactive oxygen species in response to Yersinia pestis infection, Journal of medical entomology, vol.49, issue.2, pp.364-70, 2012.

A. W. Bacot and C. J. Martin, Observations on the mechanism of the transmission of plague by fleas, J Hyg, pp.423-462, 1914.

B. J. Hinnebusch, R. D. Perry, and T. G. Schwan, Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas, Science, vol.273, issue.5273, pp.367-70, 1996.

R. J. Eisen, S. W. Bearden, A. P. Wilder, J. A. Montenieri, M. F. Antolin et al., Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proceedings of the National Academy of Sciences of the United States of America, vol.103, p.1592641, 2006.

A. W. Bacot and . Lxxxi, Further notes on the mechanism of the transmission of plague by fleas, J Hyg (Lond), vol.14, p.2206743, 1915.

Y. C. Sun, C. O. Jarrett, C. F. Bosio, and B. J. Hinnebusch, Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis, Cell host & microbe, vol.15, issue.5, pp.578-86, 2014.

K. A. Rempe, A. K. Hinz, and V. Vadyvaloo, Hfq regulates biofilm gut blockage that facilitates flea-borne transmission of Yersinia pestis, Journal of bacteriology, vol.194, issue.8, pp.6568-6579, 2012.

Y. C. Sun, A. Koumoutsi, C. Jarrett, K. Lawrence, F. C. Gherardini et al., Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases, PloS one, vol.6, issue.4, 2011.

G. X. Ren, H. Q. Yan, H. Zhu, X. P. Guo, and Y. C. Sun, HmsC, a periplasmic protein, controls biofilm formation via repression of HmsD, a diguanylate cyclase in Yersinia pestis, Environmental microbiology, vol.16, issue.4, pp.1202-1218, 2014.

C. Tam, O. Demke, T. Hermanas, A. Mitchell, A. P. Hendrickx et al., YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas, Journal of bacteriology, vol.196, issue.6, pp.1165-73, 2014.

V. Vadyvaloo, A. K. Hinz, and . Lysr, Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut, PloS one, vol.10, issue.9, p.137508, 2015.

C. Darby, S. L. Ananth, L. Tan, and B. J. Hinnebusch, Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system, Infect Immun, vol.73, issue.11, pp.7236-7278, 2005.

R. Rebeil, C. O. Jarrett, J. D. Driver, R. K. Ernst, P. C. Oyston et al., Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection, Journal of bacteriology, vol.195, issue.9, pp.1920-1950, 2013.

A. G. Bobrov, O. Kirillina, V. Vadyvaloo, B. J. Koestler, A. K. Hinz et al., The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector, Environmental microbiology, vol.17, issue.4, pp.947-59, 2015.

S. Bontemps-gallo, M. Fernandez, A. Dewitte, E. Raphael, F. C. Gherardini et al., Nutrient depletion may trigger the Yersinia pestis OmpR-EnvZ regulatory system to promote flea-borne plague transmission, Mol Microbiol, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02639027

P. K. Kanaujia, P. Bajaj, and J. S. Virdi, Analysis of iron acquisition and storage-related genes in clinical and non-clinical strains of Yersinia enterocolitica biovar 1A, APMIS, vol.123, issue.10, pp.858-66, 2015.

D. M. Bland, C. O. Jarrett, C. F. Bosio, and B. J. Hinnebusch, Infectious blood source alters early foregut infection and regurgitative transmission of Yersinia pestis by rodent fleas, PLoS pathogens, vol.14, issue.1, p.5794196, 2018.

B. J. Hinnebusch, E. R. Fischer, and T. G. Schwan, Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea, J Infect Dis, vol.178, issue.5, pp.1406-1421, 1998.

F. Sebbane, C. O. Jarrett, D. Gardner, D. Long, and B. J. Hinnebusch, Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague, Proceedings of the National Academy of Sciences of the United States of America, vol.103, issue.14, p.1414629, 2006.

F. Sebbane, C. Jarrett, D. Gardner, D. Long, and B. J. Hinnebusch, The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague, Infect Immun, vol.77, issue.3, pp.1222-1231, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00368379

P. T. Brey, W. J. Lee, M. Yamakawa, Y. Koizumi, S. Perrot et al., Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, vol.90, pp.6275-6284, 1993.

J. S. Brooke and M. A. Valvano, Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase, The Journal of biological chemistry, vol.271, issue.7, pp.3608-3622, 1996.

P. Simond, La propagation de la peste, Ann Inst Pasteur, vol.12, pp.626-86, 1898.

A. L. Burroughs, Sylvatic plague studies: The vector efficiency of nine species of fleas compared with Xenopsylla cheopis, J Hyg (Lond), vol.45, issue.3, pp.371-96, 1947.

D. M. Munshi, Micro-anatomy of the proventriculus of the common rat flea Xenopsylla cheopis (Rothschild), J Parasitol, vol.46, pp.362-72, 1960.

K. Quintard, A. Dewitte, A. Reboul, E. Madec, S. Bontemps-gallo et al., Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis, Infect Immun, vol.83, issue.9, p.4534638, 2015.

C. O. Jarrett, E. Deak, K. E. Isherwood, P. C. Oyston, E. R. Fischer et al., Transmission of Yersinia pestis from an infectious biofilm in the flea vector, J Infect Dis, vol.190, issue.4, pp.783-92, 2004.

Z. Hao, I. Kasumba, and S. Aksoy, Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae), Insect Biochem Mol Biol, vol.33, issue.11, pp.1155-64, 2003.

V. Skrodenyte-arbaciauskiene, S. Radziute, V. Stunzenas, and V. Buda, Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut, Int J Syst Evol Microbiol, vol.62, p.21669921, 2012.

H. Boubakri, A. L. De-septenville, E. Viguera, and B. Michel, The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo, The EMBO journal, vol.29, issue.1, pp.145-57, 2010.

J. Atkinson, M. K. Gupta, C. J. Rudolph, H. Bell, R. G. Lloyd et al., Localization of an accessory helicase at the replisome is critical in sustaining efficient genome duplication, Nucleic acids research, vol.39, issue.3, pp.949-57, 2010.

J. G. Bruning, J. L. Howard, and P. Mcglynn, Accessory replicative helicases and the replication of proteinbound DNA, Journal of molecular biology, vol.426, issue.24, pp.3917-3945, 2014.

S. S. Bartra, K. L. Styer, O. Bryant, D. M. Nilles, M. L. Hinnebusch et al., Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein, Infect Immun, vol.76, issue.2, pp.612-634, 2008.

V. L. Motin, A. M. Georgescu, J. M. Elliott, P. Hu, P. L. Worsham et al., Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD), Journal of bacteriology, vol.184, issue.4, pp.1019-1046, 2002.

S. P. Willias, S. Chauhan, and V. L. Motin, Functional characterization of Yersinia pestis aerobic glycerol metabolism. Microbial pathogenesis, vol.76, pp.33-43, 2014.

F. Sebbane, C. O. Jarrett, J. R. Linkenhoker, and B. J. Hinnebusch, Evaluation of the role of constitutive isocitrate lyase activity in Yersinia pestis infection of the flea vector and mammalian host, Infect Immun, vol.72, issue.12, pp.7334-7341, 2004.

Y. C. Sun, B. J. Hinnebusch, and C. Darby, Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene, Proceedings of the National Academy of Sciences of the United States of America, vol.105, issue.23, pp.8097-101, 2008.

S. M. Vetter, R. J. Eisen, A. M. Schotthoefer, J. A. Montenieri, J. L. Holmes et al., Biofilm formation is not required for early-phase transmission of Yersinia pestis. Microbiology (Reading, England), vol.156, 2010.

P. Central and P. , , p.3068684

R. J. Eisen, A. P. Wilder, S. W. Bearden, J. A. Montenieri, and K. L. Gage, Early-phase transmission of Yersinia pestis by unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) is as efficient as transmission by blocked fleas, Journal of medical entomology, vol.44, issue.4, p.17695025, 2007.

T. L. Johnson, B. J. Hinnebusch, K. A. Boegler, C. B. Graham, K. Macmillan et al., Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Microbiology (Reading, England), vol.160, 2014.

R. J. Eisen, J. L. Lowell, J. A. Montenieri, S. W. Bearden, and K. L. Gage, Temporal dynamics of early-phase transmission of Yersinia pestis by unblocked fleas: secondary infectious feeds prolong efficient transmission by Oropsylla montana (Siphonaptera: Ceratophyllidae), Journal of medical entomology, vol.44, issue.4, pp.672-679, 2007.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences of the United States of America, vol.97, issue.12, pp.6640-6645, 2000.

P. Central and P. , , p.18686

E. Pradel, N. Lemaitre, M. Merchez, R. I. Reboul, A. Dewitte et al., New insights into how Yersinia pestis adapts to its mammalian host during bubonic plague, PLoS pathogens, vol.10, issue.3, p.3968184, 2014.

K. Blank, M. Hensel, and R. G. Gerlach, Rapid and highly efficient method for scarless mutagenesis within the Salmonella enterica chromosome, PloS one, vol.6, issue.1, p.3021506, 2011.

M. Biedzka-sarek, R. Venho, and M. Skurnik, Role of YadA, Ail, and Lipopolysaccharide in Serum Resistance of, Yersinia enterocolitica Serotype O:3. Infect Immun, vol.73, issue.4, pp.2232-2276, 2005.

M. Skurnik, R. Venho, and P. Toivanen, A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis, Mol Microbiol, vol.17, issue.3, p.8559076, 1995.

C. Romier, B. Jelloul, M. Albeck, S. Buchwald, G. Busso et al., Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies, Acta Crystallogr D Biol Crystallogr, vol.62, pp.1232-1274, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188127

R. D. Macelroy and C. R. Middaugh, Bacterial ribosephosphate isomerase, Methods Enzymol, vol.89, pp.571-580, 1982.