T. Hulsen, An overview of publicly available patient-centered prostate cancer datasets, Translational Andrology and Urology, vol.8, issue.S1, pp.S64-S77, 2019.

K. L. Penney, M. J. Stampfer, J. L. Jahn, J. A. Sinnott, R. Flavin et al., Gleason grade progression is uncommon, Cancer Res, vol.73, pp.5163-5168, 2013.

R. L. Siegel, K. D. Miller, and A. Jemal, Cancer statistics, 2019, CA: A Cancer Journal for Clinicians, vol.69, issue.1, pp.7-34, 2019.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin, vol.68, pp.394-424, 2018.

M. B. Culp, I. Soerjomataram, J. A. Efstathiou, F. Bray, and A. Jemal, Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates, European Urology, vol.77, issue.1, pp.38-52, 2020.

G. Wang, D. Zhao, D. J. Spring, and R. A. Depinho, Genetics and biology of prostate cancer, Genes & Development, vol.32, issue.17-18, pp.1105-1140, 2018.

J. I. Epstein, W. C. Allsbrook, M. B. Amin, L. L. Egevad, and . Grading, Committee The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma, vol.29, pp.1228-1242, 2005.

S. Wilkinson, S. A. Harmon, N. T. Terrigino, F. Karzai, P. A. Pinto et al., A case report of multiple primary prostate tumors with differential drug sensitivity, Nat. Commun, vol.11, 2020.

K. H. Kensler and T. R. Rebbeck, Cancer Progress and Priorities: Prostate Cancer, Cancer Epidemiol. Biomark. Prev, vol.29, pp.267-277, 2020.

J. R. Stark, S. Perner, M. J. Stampfer, J. A. Sinnott, S. Finn et al., Gleason Score and Lethal Prostate Cancer: Does 3 + 4 = 4 + 3?, Journal of Clinical Oncology, vol.27, issue.21, pp.3459-3464, 2009.

C. Karakas, C. Wang, F. Deng, H. Huang, D. Wang et al., Molecular mechanisms involving prostate cancer racial disparity, Am. J. Clin. Exp. Urol, vol.5, pp.34-48, 2017.

B. S. Taylor, N. Schultz, H. Hieronymus, A. Gopalan, Y. Xiao et al., Integrative genomic profiling of human prostate cancer, Cancer Cell, vol.18, pp.11-22, 2010.

, Cancer Genome Atlas Research Network the Molecular Taxonomy of Primary Prostate Cancer, vol.163, pp.1011-1025, 2015.

C. S. Grasso, Y. Wu, D. R. Robinson, X. Cao, S. M. Dhanasekaran et al., The mutational landscape of lethal castration-resistant prostate cancer, Nature, vol.487, pp.239-243, 2012.

C. E. Barbieri, S. C. Baca, M. S. Lawrence, F. Demichelis, M. Blattner et al., Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer, Nat. Genet, vol.44, pp.685-689, 2012.

M. Fraser, V. Y. Sabelnykova, T. N. Yamaguchi, L. E. Heisler, J. Livingstone et al., Genomic hallmarks of localized, non-indolent prostate cancer, Nature, vol.541, pp.359-364, 2017.

A. Kumar, I. Coleman, C. Morrissey, X. Zhang, L. D. True et al., Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer, Nat. Med, vol.22, pp.369-378, 2016.

H. Hieronymus, N. Schultz, A. Gopalan, B. S. Carver, M. T. Chang et al., Copy number alteration burden predicts prostate cancer relapse, Proc. Natl. Acad. Sci, vol.111, pp.11139-11144, 2014.

P. Mazrooei, K. J. Kron, Y. Zhu, S. Zhou, G. Grillo et al., Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors, Cancer Cell, vol.36, issue.6, pp.674-689.e6, 2019.

S. A. Tomlins, B. Laxman, S. M. Dhanasekaran, B. E. Helgeson, X. Cao et al., Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer, Nature, vol.448, pp.595-599, 2007.

S. A. Tomlins, D. R. Rhodes, S. Perner, S. M. Dhanasekaran, R. Mehra et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer, Science, vol.310, pp.644-648, 2005.

J. Armenia, S. A. Wankowicz, D. Liu, J. Gao, R. Kundra et al., The long tail of oncogenic drivers in prostate cancer, Nat. Genet, vol.50, pp.645-651, 2018.

M. Eklund, T. Nordström, M. Aly, J. Adolfsson, P. Wiklund et al., The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50-69 yr Compared with Current Prostate Cancer Testing, Eur. Urol. Focus, vol.4, pp.707-710, 2018.

G. Boysen, D. N. Rodrigues, P. Rescigno, G. Seed, D. Dolling et al., SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity, Clin. Cancer Res, vol.24, pp.5585-5593, 2018.

H. Hieronymus, R. Murali, A. Tin, K. Yadav, W. Abida et al., Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death, vol.7, 2018.

W. Abida, J. Cyrta, G. Heller, D. Prandi, J. Armenia et al., Genomic correlates of clinical outcome in advanced prostate cancer, Proc. Natl. Acad. Sci, vol.116, pp.11428-11436, 2019.

Z. Kote-jarai, A. A. Olama, G. G. Giles, G. Severi, J. Schleutker et al., Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study, Nat. Genet, vol.43, pp.785-791, 2011.

G. J. Filion, S. Zhenilo, S. Salozhin, D. Yamada, E. Prokhortchouk et al., A family of human zinc finger proteins that bind methylated DNA and repress transcription, Mol. Cell. Biol, vol.26, pp.169-181, 2006.

N. O. Hudson, F. G. Whitby, and B. A. Buck-koehntop, Structural insights into methylated DNA recognition by the C-terminal zinc fingers of the DNA reader protein ZBTB38, J. Biol. Chem, vol.293, 2018.

A. Pozner, N. O. Hudson, J. Trewhella, T. W. Terooatea, S. A. Miller et al., The C-Terminal Zinc Fingers of ZBTB38 are Novel Selective Readers of DNA Methylation, J. Mol. Biol, vol.430, pp.258-271, 2018.

B. Miotto, M. Chibi, P. Xie, S. Koundrioukoff, H. Moolman-smook et al., The RBBP6/ZBTB38/MCM10 axis regulates DNA replication and common fragile site stability, Cell Rep, vol.7, pp.575-587, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02187826

B. Miotto, C. Marchal, G. Adelmant, N. Guinot, P. Xie et al., Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells, Nucleic Acids Res, vol.46, pp.4392-4404, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02132922

C. Marchal, M. De-dieuleveult, C. Saint-ruf, N. Guinot, L. Ferry et al., Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation, vol.7, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02132553

T. Kotoku, K. Kosaka, M. Nishio, Y. Ishida, M. Kawaichi et al., CIBZ Regulates Mesodermal and Cardiac Differentiation of by Suppressing T and Mesp1 Expression in Mouse Embryonic Stem Cells, Sci. Rep, vol.6, 2016.

T. Nishii, Y. Oikawa, Y. Ishida, M. Kawaichi, and E. Matsuda, CtBP-interacting BTB zinc finger protein (CIBZ) promotes proliferation and G1/S transition in embryonic stem cells via Nanog, J. Biol. Chem, vol.287, pp.12417-12424, 2012.

Y. Oikawa, R. Omori, T. Nishii, Y. Ishida, M. Kawaichi et al., The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression, Cell Res, vol.21, pp.1578-1590, 2011.

J. Chen, C. Xing, L. Yan, Y. Wang, H. Wang et al., Transcriptome profiling reveals the role of ZBTB38 knock-down in human neuroblastoma

J. Jing, J. Liu, Y. Wang, M. Zhang, L. Yang et al., The role of ZBTB38 in promoting migration and invasive growth of bladder cancer cells, Oncol. Rep, vol.41, 1980.

J. Wu, T. K. Mamidi, L. Zhang, and C. Hicks, Deconvolution of the Genomic and Epigenomic Interaction Landscape of Triple-Negative Breast Cancer, Cancers, vol.11, p.1692, 2019.

M. De-dieuleveult and B. Miotto, DNA Methylation and Chromatin: Role(s) of Methyl-CpG-Binding Protein ZBTB38, Epigenet, vol.11, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02132547

B. Oh, G. Figtree, D. Costa, T. Eade, G. Hruby et al., Oxidative stress in prostate cancer patients: A systematic review of case control studies, Prostate Int, vol.4, pp.71-87, 2016.

U. K. Udensi and P. B. Tchounwou, Oxidative stress in prostate hyperplasia and carcinogenesis, J. Exp. Clin. Cancer Res, vol.35, p.139, 2016.

L. G. De-almeida-chuffa, F. R. Seiva, M. S. Cucielo, H. S. Silveira, R. J. Reiter et al., Mitochondrial functions and melatonin: A tour of the reproductive cancers, Cell. Mol. Life Sci, vol.76, pp.837-863, 2019.

Y. S. Bae, H. Oh, S. G. Rhee, and Y. D. Yoo, Regulation of reactive oxygen species generation in cell signaling, Mol. Cells, vol.32, pp.491-509, 2011.

J. Lapointe, C. Li, J. P. Higgins, M. Van-de-rijn, E. Bair et al., Gene expression profiling identifies clinically relevant subtypes of prostate cancer, Proc. Natl. Acad. Sci. USA, vol.101, pp.811-816, 2004.

J. Luo, Y. P. Yu, K. Cieply, F. Lin, P. Deflavia et al., Gene expression analysis of prostate cancers, Mol. Carcinog, vol.33, pp.25-35, 2002.

S. Varambally, J. Yu, B. Laxman, D. R. Rhodes, R. Mehra et al., Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression, Cancer Cell, vol.8, pp.393-406, 2005.

H. Ross-adams, A. D. Lamb, M. J. Dunning, S. Halim, J. Lindberg et al., Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study, vol.2, pp.1133-1144, 2015.

M. S. Arredouani, B. Lu, M. Bhasin, M. Eljanne, W. Yue et al., Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer, Clin. Cancer Res, vol.15, pp.5794-5802, 2009.

P. Kunderfranco, M. Mello-grand, R. Cangemi, S. Pellini, A. Mensah et al., ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer, PLoS ONE, vol.5, 2010.

D. K. Vanaja, J. C. Cheville, S. J. Iturria, and C. Y. Young, Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression, Cancer Res, vol.63, pp.3877-3882, 2003.

K. A. Hoadley, C. Yau, T. Hinoue, D. M. Wolf, A. J. Lazar et al., Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of, Cancer. Cell, vol.173, pp.291-304, 2018.

D. Robinson, E. M. Van-allen, Y. Wu, N. Schultz, R. J. Lonigro et al., Integrative clinical genomics of advanced prostate cancer, vol.161, pp.1215-1228, 2015.

D. Cappetta, F. Rossi, E. Piegari, F. Quaini, L. Berrino et al., Doxorubicin targets multiple players: A new view of an old problem, Pharmacol. Res, vol.127, pp.4-14, 2018.

Y. Suzuki-karasaki, K. Fujiwara, K. Saito, M. Suzuki-karasaki, T. Ochiai et al., Distinct effects of TRAIL on the mitochondrial network in human cancer cells and normal cells: Role of plasma membrane depolarization, Oncotarget, vol.6, pp.21572-21588, 2015.

M. M. Kelly, B. D. Hoel, and C. Voelkel-johnson, Doxorubicin pretreatment sensitizes prostate cancer cell lines to TRAIL induced apoptosis which correlates with the loss of c-FLIP expression, Cancer Biol. Ther, vol.1, pp.520-527, 2002.

J. Jones, H. Wang, J. Zhou, S. Hardy, T. Turner et al., Nuclear Kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells, Am. J. Pathol, vol.181, pp.1836-1846, 2012.

K. Kim, G. Chadalapaka, S. S. Pathi, U. Jin, J. Lee et al., Induction of the transcriptional repressor ZBTB4 in prostate cancer cells by drug-induced targeting of microRNA-17-92/106b-25 clusters, Mol. Cancer Ther, vol.11, pp.1852-1862, 2012.

A. Abisoye-ogunniyan, H. Lin, A. Ghebremedhin, A. B. Salam, B. Karanam et al., Transcriptional repressor Kaiso promotes epithelial to mesenchymal transition and metastasis in prostate cancer through direct regulation of miR-200c, Cancer Lett, vol.431, pp.1-10, 2018.

G. Boysen, C. E. Barbieri, D. Prandi, M. Blattner, S. Chae et al., SPOP mutation leads to genomic instability in prostate cancer, vol.4, p.9207, 2015.

C. Geng, K. Rajapakshe, S. S. Shah, J. Shou, V. K. Eedunuri et al., Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer, Cancer Res, vol.74, pp.5631-5643, 2014.

J. An, C. Wang, Y. Deng, L. Yu, and H. Huang, Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants, Cell Rep, vol.6, pp.657-669, 2014.

J. Zhang, M. Chen, Y. Zhu, X. Dai, F. Dang et al., SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression, Dev. Cell, vol.48, pp.329-344, 2019.

T. Arima, H. Enokida, H. Kubo, I. Kagara, R. Matsuda et al., Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer, Cancer Sci, vol.98, pp.1720-1726, 2007.

S. Sung, H. Kubo, K. Shigemura, R. S. Arnold, S. Logani et al., Oxidative stress induces ADAM9 protein expression in human prostate cancer cells, Cancer Res, vol.66, pp.9519-9526, 2006.

J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Sci. Signal, issue.6, 2013.

D. R. Rhodes, S. Kalyana-sundaram, V. Mahavisno, R. Varambally, J. Yu et al., Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles, Neoplasia, vol.9, pp.166-180, 2007.

, NCBI Resource Coordinators Database resources of the National Center for Biotechnology Information, Nucleic Acids Res, vol.46, pp.8-13, 2018.

U. Raudvere, L. Kolberg, I. Kuzmin, T. Arak, P. Adler et al., Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update), Nucleic Acids Res, vol.47, pp.191-198, 2019.

A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo et al., Molecular signatures database (MSigDB) 3.0, Bioinformatics, vol.27, pp.1739-1740, 2011.