J. D. Lathia, S. C. Mack, and E. E. Mulkearns-hubert, Cancer stem cells in glioblastoma, Genes Dev, vol.29, pp.1203-1217, 2015.

R. Stupp, W. P. Mason, and M. J. Van-den-bent, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N Engl J Med, vol.352, pp.987-996, 2005.

R. Stupp, M. E. Hegi, and W. P. Mason, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol, vol.10, pp.459-466, 2009.

S. Bao, Q. Wu, and R. E. Mclendon, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, vol.444, pp.756-760, 2006.

J. Chen, Y. Li, and T. Yu, a restricted cell population propagates glioblastoma growth after chemotherapy, Nature, vol.488, pp.522-526, 2012.

S. K. Singh, C. Hawkins, and I. D. Clarke, Identification of human brain tumour initiating cells, Nature, vol.432, pp.396-401, 2004.

K. A. Jacobs, G. André-grégoire, and C. Maghe, Paracaspase MALT1 regulates glioma cell survival by controlling endo-lysosome homeostasis, Embo J, vol.39, p.102030, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02395350

L. Joncour, V. Filppu, P. Hyvönen, and M. , Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization, EMBO Mol Med, vol.11, p.9034, 2019.

T. Shingu, A. L. Ho, and L. Yuan, Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation, Nat Genet, vol.49, pp.75-86, 2017.

C. De-duve, B. C. Pressman, and R. Gianetto, Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue, Biochem J, vol.60, pp.604-617, 1955.

S. Conus and H. Simon, Cathepsins: key modulators of cell death and inflammatory responses, Biochem Pharmacol, vol.76, pp.1374-1382, 2008.

E. Eskelinen, Y. Tanaka, and P. Saftig, At the acidic edge: emerging functions for lysosomal membrane proteins, Trends Cell Biol, vol.13, pp.137-145, 2003.

S. Kornfeld and I. Mellman, The biogenesis of lysosomes, Annu Rev Cell Biol, vol.5, pp.483-525, 1989.

P. Saftig and J. Klumperman, Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function, Nat Rev Mol Cell Biol, vol.10, pp.623-635, 2009.

M. Sardiello, M. Palmieri, and D. Ronza-a, a gene network regulating lysosomal biogenesis and function, Science, vol.325, pp.473-477, 2009.

C. Settembre and . Ballabio-a, TFEB regulates autophagy: an integrated coordination of cellular degradation and recycling processes, Autophagy, vol.7, pp.1379-1381, 2011.

G. Napolitano and . Ballabio-a, TFEB at a glance, J Cell Sci, vol.129, pp.2475-2481, 2016.

J. A. Martina, Y. Chen, and M. Gucek, MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB, Autophagy, vol.8, pp.903-914, 2012.

. Roczniak-ferguson-a, C. S. Petit, and F. Froehlich, The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis, Sci Signal, vol.5, pp.42-42, 2012.

J. Sakamaki, S. Wilkinson, and M. Hahn, Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function, Mol Cell, vol.66, pp.517-532, 2017.

N. M. Dahms, Insulin-like growth factor II/cation-independent mannose 6-phosphate receptor and lysosomal enzyme recognition, Biochem Soc Trans, vol.24, pp.136-141, 1996.

M. Gary-bobo, P. Nirdé, and . Jeanjean-a, Mannose 6-phosphate receptor targeting and its applications in human diseases, Curr Med Chem, vol.14, pp.2945-2953, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00230130

S. Kornfeld, Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors, Annu Rev Biochem, vol.61, pp.307-330, 1992.

H. Munier-lehmann, F. Mauxion, and B. Hoflack, Function of the two mannose 6-phosphate receptors in lysosomal enzyme transport, Biochem Soc Trans, vol.24, pp.133-136, 1996.
URL : https://hal.archives-ouvertes.fr/pasteur-00167081

T. Kirchhausen, D. Owen, and S. C. Harrison, Molecular structure, function, and dynamics of clathrin-mediated membrane traffic, Cold Spring Harb Perspect Biol, vol.6, p.16725, 2014.

E. Ross, R. Ata, and T. Thavarajah, AMP-activated protein kinase regulates the cell surface proteome and integrin membrane traffic, Plos One, vol.10, p.128013, 2015.

I. Dikic and Z. Elazar, Mechanism and medical implications of mammalian autophagy, Nat Rev Mol Cell Biol, vol.19, pp.349-364, 2018.

C. Settembre, . Fraldi-a, and D. L. Medina, Signals from the lysosome: a control centre for cellular clearance and energy metabolism, Nat Rev Mol Cell Biol, vol.14, pp.283-296, 2013.

I. G. Ganley, D. H. Lam, and J. Wang, ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy, J Biol Chem, vol.284, pp.12297-12305, 2009.

N. Hosokawa, T. Hara, and T. Kaizuka, Nutrientdependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol Biol Cell, vol.20, pp.1981-1991, 2009.

C. H. Jung, C. B. Jun, and S. Ro, ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery, Mol Biol Cell, vol.20, pp.1992-2003, 2009.

C. Puente, R. C. Hendrickson, and X. Jiang, Nutrientregulated phosphorylation of ATG13 inhibits starvation-induced autophagy, J Biol Chem, vol.291, pp.6026-6035, 2016.

C. Huynh, D. Roth, and D. M. Ward, Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells, Proc Natl Acad Sci U S A, vol.101, pp.16795-16800, 2004.

J. K. Jaiswal, N. W. Andrews, and S. M. Simon, Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells, J Cell Biol, vol.159, pp.625-635, 2002.

. Reddy-a, E. V. Caler, and N. W. Andrews, Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes, Cell, vol.106, pp.157-169, 2001.

E. Machado, S. White-gilbertson, and D. Vlekkert, Regulated lysosomal exocytosis mediates cancer progression, Sci Adv, vol.1, p.1500603, 2015.

R. A. Saxton and D. M. Sabatini, mTOR signaling in growth, metabolism, and disease, Cell, vol.168, pp.960-976, 2017.

U. T. Brunk and J. L. Ericsson, Cytochemical evidence for the leakage of acid phosphatase through ultrastructurally intact lysosomal membranes, Histochem J, vol.4, pp.479-491, 1972.

R. A. Firestone, J. M. Pisano, and R. J. Bonney, Lysosomotropic agents. 1. Synthesis and cytotoxic action of lysosomotropic detergents, J Med Chem, vol.22, pp.1130-1133, 1979.

S. Aits and M. Jäättelä, Lysosomal cell death at a glance, J Cell Sci, vol.126, pp.1905-1912, 2013.

C. Mauvezin and T. P. Neufeld, Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPasedependent acidification and Ca-P60A/SERCAdependent autophagosome-lysosome fusion

, Autophagy, vol.11, pp.1437-1438, 2015.

S. Nakashima, Y. Hiraku, and S. Tada-oikawa, Vacuolar H+-ATPase inhibitor induces apoptosis via lysosomal dysfunction in the human gastric cancer cell line MKN-1, J Biochem (Tokyo), vol.134, pp.359-364, 2003.

M. Mauthe, I. Orhon, and C. Rocchi, Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion, Autophagy, vol.14, pp.1435-1455, 2018.

J. Zhou, S. Tan, and N. V. , Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion, Cell Res, vol.23, pp.508-523, 2013.

F. Loison, H. Zhu, and K. Karatepe, Proteinase 3-dependent caspase-3 cleavage modulates neutrophil death and inflammation, J Clin Invest, vol.124, pp.4445-4458, 2014.

K. Zhao, X. Zhao, and Y. Tu, Lysosomal chymotrypsin B potentiates apoptosis via cleavage of Bid, Cell Mol Life Sci, vol.67, pp.2665-2678, 2010.

P. Boya, K. Andreau, and D. Poncet, Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion, J Exp Med, vol.197, pp.1323-1334, 2003.

K. Kågedal, M. Zhao, and I. Svensson, Sphingosineinduced apoptosis is dependent on lysosomal proteases, Biochem J, vol.359, pp.335-343, 2001.

M. S. Ostenfeld, M. Høyer-hansen, and L. Bastholm, Anti-cancer agent siramesine is a lysosomotropic detergent that induces cytoprotective autophagosome accumulation, Autophagy, vol.4, pp.487-499, 2008.

R. Castino, C. Peracchio, and . Salini-a, Chemotherapy drug response in ovarian cancer cells strictly depends on a cathepsin D-Bax activation loop, J Cell Mol Med, vol.13, pp.1096-1109, 2009.

L. Groth-pedersen, M. S. Ostenfeld, and M. Høyer-hansen, Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine, Cancer Res, vol.67, pp.2217-2225, 2007.

E. Gabandé-rodríguez, P. Boya, and V. Labrador, High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type a, Cell Death Differ, vol.21, pp.864-875, 2014.

T. Kirkegaard, A. G. Roth, and N. Petersen, Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology, Nature, vol.463, pp.549-553, 2010.

E. Gulbins and R. N. Kolesnick, It takes a CAD to kill a tumor cell with a LMP, Cancer Cell, vol.24, pp.279-281, 2013.

N. Petersen, O. D. Olsen, and L. Groth-pedersen, Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase, Cancer Cell, vol.24, pp.379-393, 2013.

M. Granato, V. Lacconi, and M. Peddis, HSP70 inhibition by 2-phenylethynesulfonamide induces lysosomal cathepsin D release and immunogenic cell death in primary effusion lymphoma, Cell Death Dis, vol.4, p.730, 2013.

J. Nylandsted, W. Wick, and U. A. Hirt, Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion, Cancer Res, vol.62, pp.7139-7142, 2002.

C. Papadopoulos and H. Meyer, Detection and clearance of damaged lysosomes by the endo-lysosomal damage response and lysophagy, Curr Biol CB, vol.27, pp.1330-1341, 2017.

N. Raben and R. Puertollano, TFEB and TFE3: linking lysosomes to cellular adaptation to stress, Annu Rev Cell Dev Biol, vol.32, pp.255-278, 2016.

S. Lu, T. Sung, and N. Lin, Lysosomal adaptation: how cells respond to lysosomotropic compounds, Plos One, vol.12, p.173771, 2017.

M. Radulovic, K. O. Schink, and E. M. Wenzel, ESCRTmediated lysosome repair precedes lysophagy and promotes cell survival, Embo J, vol.37, p.99753, 2018.

M. L. Skowyra, P. H. Schlesinger, and T. V. Naismith, Triggered recruitment of ESCRT machinery promotes endolysosomal repair, Science, vol.360, p.5078, 2018.

S. Chauhan, S. Kumar, and . Jain-a, TRIMs and galectins globally cooperate and TRIM16 and Galectin-3

, Co-direct autophagy in endomembrane damage homeostasis, Dev Cell, vol.39, pp.13-27, 2016.

J. Jia, Y. P. Abudu, and C. , Galectins control MTOR and AMPK in response to lysosomal damage to induce autophagy, Autophagy, vol.15, pp.169-171, 2019.

J. Jia, B. Bissa, and L. Brecht, AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system, Mol Cell, vol.77, pp.951-969, 2020.

J. Jia, C. Gu, and Y. , Galectin-3 coordinates a cellular system for lysosomal repair and removal, Dev Cell, vol.52, pp.69-87, 2020.

T. Thurston, M. P. Wandel, and N. Von-muhlinen, Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion, Nature, vol.482, pp.414-418, 2012.

B. Zhitomirsky and Y. G. Assaraf, Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis, Oncotarget, vol.8, pp.45117-45132, 2017.

C. S. Ferranti, J. Cheng, and C. Thompson, Fusion of lysosomes to plasma membrane initiates radiation-induced apoptosis, J Cell Biol, vol.219, p.201903176, 2020.

F. Villegas, D. Lehalle, and D. Mayer, Lysosomal signaling licenses embryonic stem cell differentiation via inactivation of Tfe3, Cell Stem Cell, vol.24, pp.257-270, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02005576

D. S. Leeman, K. Hebestreit, and T. Ruetz, Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging, Science, vol.359, pp.1277-1283, 2018.

J. S. Young, S. J. Chmura, and D. A. Wainwright, Management of glioblastoma in elderly patients, J Neurol Sci, vol.380, pp.250-255, 2017.

J. H. Lee, J. E. Lee, and J. Y. Kahng, Human glioblastoma arises from subventricular zone cells with low-level driver mutations, Nature, vol.560, pp.243-247, 2018.

S. K. Singh, I. D. Clarke, and M. Terasaki, Identification of a cancer stem cell in human brain tumors, Cancer Res, vol.63, pp.5821-5828, 2003.

A. M. Kaufmann and J. P. Krise, Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications, J Pharm Sci, vol.96, pp.729-746, 2007.

S. Enzenmüller, P. Gonzalez, and G. Karpel-massler, GDC-0941 enhances the lysosomal compartment via TFEB and primes glioblastoma cells to lysosomal membrane permeabilization and cell death, Cancer Lett, vol.329, pp.27-36, 2013.

W. Zhou, Y. Guo, and X. Zhang, Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma, J Cell Biochem, vol.121, pp.2027-2037, 2020.

S. S. Jensen, S. A. Petterson, and B. Halle, Effects of the lysosomal destabilizing drug siramesine on glioblastoma in vitro and in vivo, BMC Cancer, vol.17, p.178, 2017.

B. Jaishy and E. D. Abel, Lipids, lysosomes, and autophagy, J Lipid Res, vol.57, pp.1619-1635, 2016.

R. E. Lawrence and R. Zoncu, The lysosome as a cellular centre for signalling, metabolism and quality control, Nat Cell Biol, vol.21, pp.133-142, 2019.

J. Wojton, W. H. Meisen, and N. K. Jacob, SapC-DOPSinduced lysosomal cell death synergizes with TMZ in glioblastoma, Oncotarget, vol.5, pp.9703-9709, 2014.

R. Mora, I. Dokic, and T. Kees, Sphingolipid rheostat alterations related to transformation can be exploited for specific induction of lysosomal cell death in murine and human glioma: sphingosine kinase and lysosomal cell death, Glia, vol.58, pp.1364-1383, 2010.

S. Hailfinger, G. Lenz, and V. Ngo, Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma, Proc Natl Acad Sci, vol.106, pp.19946-19951, 2009.

M. Jaworski and M. Thome, The paracaspase MALT1: biological function and potential for therapeutic inhibition, Cell Mol Life Sci, vol.73, pp.459-473, 2016.

D. Nagel, S. Spranger, and M. Vincendeau, Pharmacologic Inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL, Cancer Cell, vol.22, pp.825-837, 2012.

T. Thys-a,-douanne and N. Bidère, Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma, Front Oncol, vol.8, p.498, 2018.

R. Weil, Deciphering the pathway from the TCR to NF-kB, Cell Death Differ, vol.13, pp.826-833, 2006.

F. Schlauderer, K. Lammens, and D. Nagel, Structural analysis of phenothiazine derivatives as allosteric inhibitors of the MALT1 paracaspase, Angew Chem Int Ed, vol.52, pp.10384-10387, 2013.

E. M. Galan-moya, L. Guelte-a, and E. Lima-fernandes, Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway, EMBO Rep, vol.12, pp.470-476, 2011.

R. Puertollano, mTOR and lysosome regulation, Rep, vol.6, p.52, 2014.

B. Zhitomirsky, Y. A. Kreiserman, and R. , Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity, Cell Death Dis, vol.9, p.1191, 2018.

V. A. Cuddapah, S. Robel, and S. Watkins, a neurocentric perspective on glioma invasion, Nat Rev Neurosci, vol.15, pp.455-465, 2014.

A. P. Patel, I. Tirosh, and J. J. Trombetta, Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science, vol.344, pp.1396-1401, 2014.