B. M. Dancy and P. A. Cole, Protein lysine acetylation by p300/CBP, Chem Rev, vol.115, pp.2419-2452, 2015.

N. Attar and S. K. Kurdistani, Exploitation of EP300 and CREBBP lysine acetyltransferases by cancer. Cold Spring Harb Perspect Med, vol.7, 2017.

S. Chen, B. Feng, B. George, R. Chakrabarti, M. Chen et al., Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells, Am J Physiol Metab, vol.298, pp.127-137, 2010.

L. He, K. Naik, S. Meng, J. Cao, A. R. Sidhaye et al., Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis, J Biol Chem, vol.287, pp.32069-77, 2012.

X. Gang, Y. Yang, J. Zhong, K. Jiang, Y. Pan et al., P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth, Oncotarget, vol.7, pp.15135-15149, 2016.

I. H. Lee and T. Finkel, Regulation of autophagy by the p300 acetyltransferase, J Biol Chem, vol.284, pp.6322-6328, 2009.

W. Wan, Z. You, Y. Xu, L. Zhou, Z. Guan et al., mTORC1 Phosphorylates Acetyltransferase p300 to Regulate Autophagy and Lipogenesis, Mol Cell, vol.68, pp.323-335, 2017.

J. R. Cardinaux, J. C. Notis, Q. Zhang, N. Vo, J. C. Craig et al., Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation, Mol Cell Biol, vol.20, pp.1546-52, 2000.

S. C. Hu, J. Chrivia, and A. Ghosh, Regulation of CBP-mediated transcription by neuronal calcium signaling, Neuron, vol.22, pp.799-808, 1999.

S. A. Wang, C. Y. Hung, J. Y. Chuang, W. C. Chang, T. I. Hsu et al., Phosphorylation of p300 increases its protein degradation to enhance the lung cancer progression, Biochim Biophys Acta, vol.1843, pp.1135-1149, 2014.

F. Liu, L. Wang, F. Perna, and S. D. Nimer, Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape, Nat Rev Cancer, vol.16, pp.359-372, 2016.

W. Huang and C. Chen, Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity, Mol Cell Biol, vol.25, pp.6592-602, 2005.

P. R. Thompson, D. Wang, L. Wang, M. Fulco, N. Pediconi et al., Regulation of the p300 HAT domain via a novel activation loop, Nat Struct Mol Biol, vol.11, pp.308-315, 2004.

M. Delvecchio, J. Gaucher, C. Aguilar-gurrieri, E. Ortega, and D. Panne, Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation, Nat Struct Mol Biol, vol.20, pp.1040-1046, 2013.

W. Yang, Y. H. Hong, X. Q. Shen, C. Frankowski, H. S. Camp et al., Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors, J Biol Chem, vol.276, pp.38341-38344, 2001.

I. P. Salt, G. Johnson, S. J. Ashcroft, and D. G. Hardie, AMP-activated protein kinase is activated by low glucose in cell lines derived from pancreatic beta cells, and may regulate insulin release, Biochem J, vol.335, pp.533-542, 1998.

S. C. Lin and D. G. Hardie, AMPK: Sensing Glucose as well as Cellular Energy Status, Cell Metabolism, pp.299-313, 2018.

R. A. Henry, Y. M. Kuo, V. Bhattacharjee, T. J. Yen, and A. J. Andrews, Changing the selectivity of p300 by acetylcoa modulation of histone acetylation, ACS Chem Biol, vol.10, pp.146-156, 2015.

F. Pietrocola, L. Galluzzi, J. M. Bravo-san-pedro, F. Madeo, and G. Kroemer, Acetyl coenzyme A: A central metabolite and second messenger, Cell Metabolism, pp.805-821, 2015.

M. Arif, G. Kumar, C. Narayana, and T. K. Kundu, Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: Probed by surface enhanced Raman spectroscopy, J Phys Chem B, vol.111, pp.11877-11879, 2007.

E. M. Bowers, G. Yan, C. Mukherjee, A. Orry, L. Wang et al., Virtual ligand screening of the p300/CBP histone acetyltransferase: Identification of a selective small molecule inhibitor, Chem Biol, vol.17, pp.471-482, 2010.

R. A. Henry, Y. M. Kuo, and A. J. Andrews, Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4, Biochemistry, vol.52, pp.5746-5759, 2013.

H. J. Szerlong, J. E. Prenni, J. K. Nyborg, and J. C. Hansen, Activator-dependent p300 acetylation of chromatin in vitro: Enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions, J Biol Chem, vol.285, pp.31954-31964, 2010.

C. Vindis, M. H. Ségué-las, S. Lanier, A. Parini, and C. Cambon, Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase, Kidney Int, vol.59, pp.76-86, 2001.

M. Ushio-fukai, R. W. Alexander, M. Akers, Q. Q. Yin, Y. Fujio et al., Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells, J Biol Chem, vol.274, pp.22699-22704, 1999.

J. W. Zmijewski, S. Banerjee, H. Bae, A. Friggeri, E. R. Lazarowski et al., Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase, J Biol Chem, vol.285, pp.33154-33164, 2010.

S. Olivier, M. Foretz, and B. Viollet, Promise and challenges for direct small molecule AMPK activators, Biochemical Pharmacology, pp.147-158, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01724341

B. Xiao, M. J. Sanders, D. Carmena, N. J. Bright, L. F. Haire et al., Structural basis of AMPK regulation by small molecule activators, Nat Commun, vol.4, pp.3017-3027, 2013.

O. Göransson, A. Mcbride, S. A. Hawley, F. A. Ross, N. Shpiro et al., Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase, J Biol Chem, vol.282, pp.32549-32560, 2007.

S. Olivier, J. Leclerc, A. Grenier, M. Viollet, and J. Tamburini, Ampk activation promotes tight junction assembly in intestinal epithelial caco-2 cells, Int J Mol Sci, vol.20, p.5171, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02330186

A. Grenier, P. Sujobert, S. Olivier, H. Guermouche, J. Mondé-sir et al., Knockdown of human AMPK using the CRISPR/Cas9 genome-editing system, Methods in Molecular Biology, pp.171-194, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02349913

A. Woods, D. Azzout-marniche, M. Foretz, S. C. Stein, P. Lemarchand et al., Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase, Mol Cell Biol, vol.20, pp.6704-6711, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01611458

S. L. Choi, S. J. Kim, K. T. Lee, J. Kim, J. Mu et al., The regulation of AMP-activated protein kinase by H2O2, Biochem Biophys Res Commun, vol.287, pp.92-97, 2001.

B. M. Emerling, F. Weinberg, C. Snyder, Z. Burgess, G. M. Mutlu et al., Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio, Free Radic Biol Med, vol.46, pp.1386-1391, 2009.

L. Wang, Y. Tang, P. A. Cole, and R. Marmorstein, Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Current Opinion in Structural Biology, pp.741-747, 2008.

Y. Kim and C. W. Park, Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Research and Clinical Practice, pp.69-77, 2016.

D. G. Hardie and S. Lin, AMP-activated protein kinase-not just an energy sensor, vol.6, p.1724, 2017.

K. Z. Guyton, Y. Liu, M. Gorospe, Q. Xu, and N. J. Holbrook, Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury, J Biol Chem, vol.271, pp.4138-4180, 1996.

M. Turunen, J. Olsson, and G. Dallner, Metabolism and function of coenzyme Q, Biochim Biophys Acta, vol.1660, pp.171-199, 2004.

A. Chocarro-calvo, J. M. García-martínez, S. Ardila-gonzá-lez, D. La-vieja, A. García-jimé-nez et al., Glucose-Induced ?-Catenin Acetylation Enhances Wnt Signaling in Cancer, Mol Cell, vol.49, pp.474-486, 2013.

T. Tanaka, H. Kohno, R. Suzuki, Y. Yamada, S. Sugie et al., A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate, Cancer Sci, vol.94, pp.965-973, 2003.

B. Parang, C. W. Barrett, and C. S. Williams, AOM/DSS Model of Colitis-Associated Cancer, Methods Mol Biol, 2016.

C. García-jiménez and C. R. Goding, Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming, Cell Metab, vol.29, pp.254-267, 2018.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: A nutrient and energy sensor that maintains energy homeostasis, Nature Reviews Molecular Cell Biology, pp.251-262, 2012.

M. M. Mihaylova and R. J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism, Nature Cell Biology, pp.1016-1023, 2011.

A. Barbáchano, M. J. Larriba, G. Ferrer-mayorga, J. M. González-sancho, and A. Muñoz, Vitamin D and Colon Cancer. Vitamin D: Fourth Edition, pp.837-862, 2017.

L. W. Yuan and J. E. Gambee, Phosphorylation of p300 at serine 89 by protein kinase C, J Biol Chem, vol.275, pp.40946-40951, 2000.

L. W. Yuan, J. W. Soh, and I. B. Weinstein, Inhibition of histone acetyltransferase function of p300 by PKC?, Biochim Biophys Acta-Mol Cell Res, vol.1592, pp.327-327, 2002.

M. Y. Chang, D. Y. Huang, F. M. Ho, K. C. Huang, and W. W. Lin, PKC-dependent human monocyte adhesion requires AMPK and Syk activation, PLoS ONE, vol.7, 2012.

A. Bugyei-twum, A. Advani, S. L. Advani, Y. Zhang, K. Thai et al., High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy, Cardiovasc Diabetol, vol.13, p.24886336, 2014.

W. Abbud, S. Habinowski, J. Z. Zhang, J. Kendrew, F. S. Elkairi et al., Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport, Arch Biochem Biophys, vol.380, pp.347-352, 2000.

Y. Sakar, B. Meddah, M. Faouzi, Y. Cherrah, A. Bado et al., Metformin-induced regulation of the intestinal d-glucose transporters, J Physiol Pharmacol, vol.61, pp.301-307, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00501629

N. Wu, B. Zheng, A. Shaywitz, Y. Dagon, C. Tower et al., AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1, Mol Cell, vol.49, pp.1167-1175, 2013.

D. Carling, C. Thornton, A. Woods, and M. J. Sanders, AMP-activated protein kinase: new regulation, new roles?, Biochem J, vol.445, pp.11-27, 2012.

G. Zadra, J. L. Batista, and M. Loda, Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies, Mol Cancer Res, vol.13, pp.1059-1072, 2015.

M. Foretz, B. Guigas, L. Bertrand, M. Pollak, and B. Viollet, Metformin: From mechanisms of action to therapies, Cell Metabolism, pp.953-966, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092553

G. Rena, D. G. Hardie, and E. R. Pearson, The mechanisms of action of metformin, p.28776086, 2017.

D. Vara-ciruelos, F. M. Russell, and D. G. Hardie, The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde, Open Biol, vol.9, 2019.

X. Li, L. Wang, X. E. Zhou, J. Ke, D. Waal et al., Structural basis of AMPK regulation by adenine nucleotides and glycogen, Cell Res, vol.25, pp.50-66, 2015.

N. R. Janzen, J. Whitfield, and N. J. Hoffman, Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. International journal of molecular sciences, 2018.

D. Garcia and R. J. Shaw, AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance

A. Mcbride, S. Ghilagaber, A. Nikolaev, and D. G. Hardie, The Glycogen-Binding Domain on the AMPK ? Subunit Allows the Kinase to Act as a Glycogen Sensor, Cell Metab, vol.9, pp.23-34, 2009.

M. Otto, J. Breinholt, and N. Westergaard, Metformin inhibits glycogen synthesis and gluconeogenesis in cultured rat hepatocytes. Diabetes, Obes Metab, p.12681026, 2003.

H. Bhanot, M. M. Reddy, A. Nonami, E. L. Weisberg, K. Xing et al., Small Molecule Activators Of AMPK Block The Glycogen Production Required For Transformation Of Myeloid Leukemia Cells, Blood, vol.122, pp.1479-1479, 2013.

S. Suissa and L. Azoulay, Metformin and cancer: Mounting evidence against an association. Diabetes Care, pp.1786-1788, 2014.

K. Karmodiya, A. R. Krebs, M. Oulad-abdelghani, H. Kimura, and L. Tora, H3K9 and H3K14 acetylation cooccur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells, BMC Genomics, vol.13, p.424, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00742676

A. Chocarro-calvo, J. M. Garcia-martinez, S. Ardila-gonzalez, D. La-vieja, A. et al., Glucoseinduced beta-catenin acetylation enhances Wnt signaling in cancer, Mol Cell, vol.49, pp.474-486, 2013.

, Biochemistry Brownlee M. and molecular cell biology of diabetic complications, pp.813-820, 2001.

C. García-jiménez, M. Gutié-rrez-salmeró-n, A. Chocarro-calvo, J. M. García-martinez, A. Castaño et al., From obesity to diabetes and cancer: Epidemiological links and role of therapies, Br J Cancer, vol.114, pp.716-722, 2016.

M. Gutié-rrez-salmeró-n, A. Chocarro-calvo, J. M. García-martínez, A. De-la-vieja, and C. García-jimé-nez, Bases epidemioló gicas y mecanismos moleculares implicados en las asociaciones de obesidad y diabetes con cá ncer. Endocrinol Diabetes y Nutr, vol.64, pp.109-117, 2017.

C. E. Zois and A. L. Harris, Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy, Journal of Molecular Medicine, p.26882899, 2016.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and, Methods, vol.25, pp.402-408, 2001.

E. Cerami, J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer et al., The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data, Cancer Discov, vol.2, pp.401-404, 2012.

J. Gao, B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross et al., Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Sci Signal, vol.6, pp.1-34, 2013.

A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdóttir, P. Tamayo et al., Molecular signatures database (MSigDB) 3.0, Bioinformatics, vol.27, pp.1739-1740, 2011.

S. Riesenberg, A. Groetchen, R. Siddaway, T. Bald, J. Reinhardt et al., MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment, Nat Commun, vol.6, 2015.

O. Menyhá-rt, Á. Nagy, and . Gyó, Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma, R Soc Open Sci, vol.5, 2018.

G. De-luca, M. T. Russo, P. Degan, C. Tiveron, A. Zijno et al., A role for oxidized DNA precursors in Huntington's disease-like striatal neurodegeneration, PLoS Genet, 2008.

G. Y. Liou and P. Storz, Reactive oxygen species in cancer. Free Radical Research, pp.479-496, 2010.